首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Eighty growing steers were used to determine the effect of nickel supplementation on performance and metabolic parameters of steers fed corn silage-based diets supplemented with different crude protein sources. Crude protein sources examined included: (1) soybean meal, (2) blood meal, (3) urea, and (4) blood meal-urea (two-thirds of supplemental nitrogen from blood meal and one-third from urea). The protein sources differed in ruminal degradability, nitrogen solubility, and nickel content. Nickel was added within each protein treatment to supply either 0 or 5 ppm of supplemental nickel. The experiment was 84 d in duration and rumen fluid and blood samples were collected on days 42 and 80. Average daily gain and feed efficiency were not affected by nickel supplementation. The addition of 5 ppm supplemental nickel greatly increased rumen bacterial urease activity regardless of protein source. When samples were collected prior to feeding on day 80, nickel increased serum urea nitrogen concentrations in steers fed urea, but decreased circulating urea concentrations in animals fed blood meal or the blood meal-urea combination.Ad libitum intake of trace mineral salt was greatly reduced in steers receiving 5 ppm supplemental nickel. The present study suggests that the source of protein may influence ruminant responses to dietary nickel.  相似文献   

2.
Summary An experiment was performed to evaluate the effects of somatotropin on plasma free amino acid, urea and insulin concentrations and rumen fermentation pattern and to assess their relationships. Four Italian Friesian dairy cows fitted with rumen cannulae were used in a switch-back design. Slow releasing recombinant bovine somatotropin (640 mg/cow) was injected every 28 days for two consecutive periods. Rumen fluid and blood samples were collected before and after feeding at 0, 7 and 21 days after rbST injection. Exogenous rbST increased plasma insulin concentration and the insulin response to feeding, and decreased plasma urea and free essential and branched chain amino acid concentrations. rbST did not affect rumen fermentation pattern. No correlation was found between rumen and plasma parameters measured after feeding. Our results are consistent with the notion that the main effect of somatotropin is post-absorptive.  相似文献   

3.
In experiments on 4 sheep fed on a low protein diet [6.2 g N/day] and given a single i.v. dose of 15N-labelled urea [15 mg 15N/kg body mass], the authors found that, from 0.5 to 6 h, mean 15N incorporation rose progressively in the total rumen fluid nitrogen from 0.23 to 0.44 at. % 15N and in the rumen bacterial nitrogen from 0.11 to 0.51 at. % 15N. Up to 3 h, total nitrogen enrichment was greater (0.5 at. % 15N) than enrichment of bacterial nitrogen (0.28 at. % 15N), but from 3 to 6 h there was little difference between them. The mean 15N values in the nucleic acids isolated from rumen fluid bacteria in samples collected 3 and 6 hours after injecting labelled urea into the blood were 0.15 and 0.19 at. % 15N respectively, in nucleic acids isolated from the liver 0.042 and 0.04 at. % 15N, in the total rumen bacterial nitrogen 0.28 and 0.51 at. % 15N and in the total liver nitrogen 0.11 and 0.11 at. % 15N. It is concluded from the results that blood urea nitrogen is utilized for synthesis of the total nitrogenous substances of the sheep's rumen bacteria and liver far more intensively than for synthesis of the nucleic acids isolated from them. At the same time, it is utilized more intensively for nucleic acid synthesis in the rumen bacteria than in the liver.  相似文献   

4.
The experiment carried out on two wethers demonstrated that nitrogen of intravenously injected urea, labelled with 15N was incorporated into total and bacterial nitrogen fraction of the digesta flowing through the rumen and duodenum. The amount of 15N in the bacterial fraction flowing throught the rumen and duodenum was relatively low in comparison with the amount of 15N in the total nitrogen (14,8% and 8,1% in the rumen and 6,6% and 7,9% in the duodenum. The ratio of the amount of bacterial-N to total-N in the rumen content (12,7 and 7,5%) was only slightly lower than the ratio of bacterial 15N to total 15N. In the duodenum this ratio was a little higher (8,7 and 10,0%). Blood urea nitrogen was utilized only partly in biosynthesis of bacterial protein. The results showed that only a small amount of blood urea nitrogen retained in the organism was utilized for microbial protein synthesis and the majority in some different way.  相似文献   

5.
Three ruminally cannulated and multicatheterised lactating dairy cows were used to investigate the effect of different supplement strategies to fresh clover grass on urea and short-chain fatty acid (SCFA) metabolism in a zero-grazing experiment with 24-h blood and ruminal samplings. Fresh clover grass was cut every morning and offered from 0800 to 1500 h. Maize silage was fed at 1530 h. The three treatments, arranged in a Latin square, differed by timing of feeding rolled barley and soya-bean hulls relative to fresh clover grass. All diets had the same overall composition. Treatments were soya-bean hulls fed at 0700 h and barley fed at 1530 h (SAM), barley fed at 0700 h and soya-bean hulls fed at 1530 h (BAM), and both soya-bean hulls and barley fed at 1530 h (SBPM). The grass had an unexpectedly low content of crude protein (12.7%) and the cows were severely undersupplied with rumen degradable protein. The treatment effects were numerically small; greater arterial ammonia concentration, net portal flux of ammonia and net hepatic flux of urea during part of the day were observed when no supplementary carbohydrate was fed before grass feeding. A marked diurnal variation in ruminal fermentation was observed and grass feeding increased ruminal concentrations of propionate and butyrate. The net portal fluxes of propionate, butyrate, isovalerate and valerate as well as the net hepatic uptake of propionate, butyrate, valerate and caproate increased after feeding at 0700 h. The hepatic extraction of butyrate showed a relatively large depression with grass feeding with nadir at 1200 to 1330 h. The increased net portal absorption and the decreased hepatic extraction resulted in an approximately six-fold increase in the arterial blood concentration of butyrate. The gut entry rate of urea accounted for 70 ± 10% of the net hepatic production of urea. Saliva contributed to 14% of the total amount of urea recycled to the gut. Urea recycling to the gut was equivalent to 58% of the dietary nitrogen intake. Despite the severe undersupply of rumen degradable protein, the portal-drained viscera did not extract more than 4.3% of the urea supplied with arterial blood. This value is in line with the literature values for cows fed diets only moderately deficient in rumen degradable protein and indicates that cows maximise urea transfer across gut epithelia even when the diet is moderately deficient in rumen degradable protein.  相似文献   

6.
Urease activity of adherent bacteria and rumen fluid bacteria   总被引:1,自引:0,他引:1  
In experiments on six sheep fed on a low nitrogen diet (3.7 g N/day), urease (EC 3.5.1.5) activity (nkat X mg-1 bacterial dry weight) 3 h after feeding was found to be highest in the bacteria adhering to the rumen wall (13.25 +/- 2.10), lower in the rumen fluid bacteria (8.96 +/- 1.35) and lowest in the bacteria adhering to feed particles in the rumen (5.69 +/- 2.13). The urease activity of bacteria adhering to the rumen wall and of the rumen fluid bacteria of six sheep fed on a high nitrogen diet (21 g N/day) was significantly lower than in sheep with a low N intake and in both cases was roughly the same (3.81 +/- 1.37 and 3.76 +/- 1.02 respectively); it was lowest in bacteria adhering to feed particles in the rumen (1.92 +/- 0.90). It is concluded from the results that the urease activity of rumen fluid bacteria and of bacteria adhering to the rumen wall and to feed particles in the rumen is different and that it falls significantly in the presence of a high nitrogen intake. From the relatively high ureolytic activity of bacteria adhering to the rumen wall in the presence of a low nitrogen intake it is assumed that this is one of the partial mechanisms of the hydrolysis of blood urea entering the rumen across the rumen wall and of its reutilization in the rumen-liver nitrogen cycle in ruminants.  相似文献   

7.
The UT-A (SLC14a2) and UT-B (SLC14a1) genes encode a family of specialized urea transporter proteins that regulate urea movement across plasma membranes. In this report, we describe the structure of the bovine UT-B (bUT-B) gene and characterize UT-B expression in bovine rumen. Northern analysis using a full-length bUT-B probe detected a 3.7-kb UT-B signal in rumen. RT-PCR of bovine mRNA revealed the presence of two UT-B splice variants, bUT-B1 and bUT-B2, with bUT-B2 the predominant variant in rumen. Immunoblotting studies of bovine rumen tissue, using an antibody targeted to the NH2-terminus of mouse UT-B, confirmed the presence of 43- to 54-kDa UT-B proteins. Immunolocalization studies showed that UT-B was mainly located on cell plasma membranes in epithelial layers of the bovine rumen. Ussing chamber measurements of ruminal transepithelial transport of (14)C-labeled urea indicated that urea flux was characteristically inhibited by phloretin. We conclude that bUT-B is expressed in the bovine rumen and may function to transport urea into the rumen as part of the ruminant urea nitrogen salvaging process.  相似文献   

8.
Cheviot wethers were defaunated by using dioctyl sodium sulfosuccinate and were constantly infused with urea to provide 2.87% of the daily N intake. Defaunation resulted in higher rumen dry matter and lower rumen pH. The molar per cent propionate was higher in defaunated sheep, whereas the molar per cent butyrate and acetate was lower. Apparent nitrogen digestibility, nitrogen utilization, and nitrogen balance were higher in defaunated sheep when compared with faunated animals. Urea infusion resulted in lower apparent nitrogen digestibility, nitrogen utilization, and nitrogen balance in faunated sheep, but did not affect nitrogen metabolism in defaunated sheep. Rumen ammonia-N levels in defaunated sheep were lower than those observed for faunated animals, and urea infusion into faunated sheep increased rumen ammonia-N levels to a greater extent than did the urea infusion into defaunated animals. Significant correlations were demonstrated between rumen ammonia-N levels and C(2)/C(3), C(3)/C(4) and C(2)/C(4) volatile acid ratios. From this it was concluded that, as rumen ammonia-N levels increased, there was a shift from propionate to higher proportions of butyrate and acetate.  相似文献   

9.
The fatty acid profiles and contents of protozoa from the rumen fluid of cattle varied according to the type of diet consumed by their host. Changing from a high-quality hay diet to a low-quality hay diet (DA) decreased the proportions of saturated acids and increased the proportions of the unsaturated acids 18:1 cis-9, 18:2 and 18:3 in neutral lipids (NL) and phospholipids (PL). Adding sucrose, urea and sulphur (SUS) to DA increased the proportions of branched chain acids in PL while addition of safflower oil increased polyunsaturated acids in PL and 18:1 trans-11 in NL. Diet did not alter the PL fatty acid content of protozoa but oil supplement of DA resulted in a 10-fold increase in the content of free fatty acids. The defaunating effect of oil supplement was partly reversed by SUS suggesting that factors other than the fatty acid content of cells are important in determining the toxicity of oil to rumen protozoa. The results indicate that the amounts of individual long-chain fatty acids taken up by rumen ciliates are largely determined by their concentrations in rumen digesta.  相似文献   

10.
The fatty acid profiles and contents of protozoa from the rumen fluid of cattle varied according to the type of diet consumed by their host. Changing from a high-quality hay diet to a low-quality hay diet (DA) decreased the proportions of saturated acids and increased the proportions of the unsaturated acids 18:1 cis-9, 18:2 and 18:3 in neutral lipids (NL) and phospholipids (PL). Adding sucrose, urea and sulphur (SUS) to DA increased the proportions of branched chain acids in PL while addition of safflower oil increased polyunsaturated acids in PL and 18:1 trans-11 in NL. Diet did not alter the PL fatty acid content of protozoa but oil supplement of DA resulted in a 10-fold increase in the content of free fatty acids. The defaunating effect of oil supplement was partly reversed by SUS suggesting that factors other than the fatty acid content of cells are important in determining the toxicity of oil to rumen protozoa. The results indicate that the amounts of individual long-chain fatty acids taken up by rumen ciliates are largely determined by their concentrations in rumen digesta.  相似文献   

11.
In experiments on 18 sheep with a differentiated nitrogen intake (3.7, 6.2 and 21 g N/day), it was found that different enzyme activities--glutamate dehydrogenase (GDH) (NADH- and NADPH-dependent) and glutamine synthetase (GS)--of bacteria adhering to the rumen wall and to food particles and the rumen fluid bacteria altered in correlation to the nitrogen intake. With a nitrogen intake of 3.7-6.2 g/day there was a significant increase, and of 6.2-21 g/day a decrease, in NADH- and NADPH-dependent GDH activity in the three given bacterial fractions, with the exception of NADPH-dependent GDH activity of the rumen fluid bacteria of sheep given 3.7-6.2 g N/day, in which the difference was nonsignificant. GS activity was significantly higher only in adherent rumen wall bacteria in the presence of a nitrogen intake of 3.7-6.2-21 g/day. The results show that the effect of the nitrogen intake on the given enzyme activities is strongest in the case of bacteria adhering to the rumen wall. The high GS activity and low GDH activities in these bacteria during lower nitrogen intakes (3.7 g/day) as well as lower rumen ammonia concentration (2.39 +/- 0.98 mmol.l-1) indicate that bacteria adhering to the rumen wall utilize ammonia at an increased rate by means of CS catalyzed reactions. Reduced GDH activity in the presence of a high nitrogen intake (21 g/day) and the relatively high rumen ammonia concentration (36.63 +/- 5.28 mmol.l-1) indicate that ammonia inhibits this enzyme in the rumen bacteria in question.  相似文献   

12.
Dietary anthocyanins (ATH) have probiotic and antioxidant functions in humans. They may also have beneficial impacts on rumen microorganisms and subsequently nutrient digestion in cattle. The experiment aimed to study the effects of dietary red cabbage extract (RCE) rich in ATH on rumen fermentation, rumen bacterial community, and nutrient digestibility in beef bulls. Eight Simmental beef bulls and two RCE levels (0 and 120 g/d) were allocated in a replicated 2 × 2 crossover design. Each experimental period included 15 days for adaptation and subsequent 5 days for sampling. The results showed that dietary addition of RCE increased the ruminal concentration of total volatile fatty acids and the molar proportion of propionate, decreased the acetate to propionate ratio, and tended to decrease the molar proportion of acetate, but it did not affect the ruminal pH and the concentrations of ammonia N, microbial CP, monophenols, polyphenols, and total phenolics. ATH was undetectable in the ruminal fluid of beef bulls in both groups. RCE did not affect the alpha diversity of rumen bacterial community, and the relative abundances of major rumen bacteria at the phylum level, but it increased the relative abundances of Ruminobacter and Anaerovibrio and tended to increase the relative abundances of Oribacterium and Monoglobus at the genus level. RCE tended to increase the plasma concentrations of globulin and total protein, but it did not affect the plasma albumin, urea, triglyceride, glucose, and antioxidant activities. Dietary addition of RCE did not affect the apparent nutrient digestibility. In conclusion, the ATH in RCE was highly hydrolysable in rumen fluid. Dietary addition of RCE increased the ruminal concentration of total volatile fatty acids, decreased the acetate to propionate ratio, and slightly modified the rumen bacterial community, but it did not affect the nutrient digestibility and the plasma antioxidants in beef bulls.  相似文献   

13.
Three experiments were conducted with Angus or Holstein steers to evaluate effects of dietary urea–calcium (a slow rumen-release urea source) on absorption of ammonia N from the gut and urea N production in the liver. Steers were fed a high-grain diet (Experiment 1) or an all-forage diet (Experiments 2 and 3). Urea or urea–calcium (0.25 g/kg body weight) was dosed into the esophagus (Experiments 1 and 2) or rumen (Experiment 3), and blood samples were serially collected for 180 min. Blood concentrations of ammonia N and urea N were measured in all experiments, and net flux of metabolites across splanchnic tissues was measured in Experiment 3. Compared to urea, urea–calcium reduced (P<0.05) plasma concentrations of ammonia N in steers fed all-forage diets, and tended (P<0.06) to reduce arterial glucose concentrations in Experiment 3. Plasma concentrations of urea N were not affected by treatment in any experiment. Treatment and time post-dosing interactions (P<0.05) in Experiment 3 were due to increased ruminal fluid concentrations of ammonia N, net release of ammonia N by portal-drained viscera and total splanchnic tissues with urea versus urea–calcium treatment shortly after dosing. Similar interactions (P<0.05) indicated that urea caused higher hepatic glucose release and increased l-lactate release by total splanchnic tissues after dosing than urea–calcium. Urea–calcium was effective in mitigating rapid ammonia release in the rumen and subsequent effects on glucose and lactate metabolism.  相似文献   

14.
To confirm the transfer of ammonia leaking from the rumen content via the liver to the perid by laparotomy. When ammonia leakage from the hepatic vein occurred, it was followed by an increase in ammonia concentration in the jugular vein. There were increases of ammonia concentration in the intestinal vein and in the thoracic duct after urea drenching. These increases suggested neither trapping ammonia in the peritoneal fluid nor responsibility for increases of ammonia in the systemic circulation, respectively. At times when respiration ceased due to urea poisoning, the peritoneal fluids wee in the fluid. The hypothesis of the peritoneal cavity-thoracic duct route of ammonia absorption, presented by some of previous workers on urea toxicity, was not supported in the present study.  相似文献   

15.
The mean NH3 concentration in the rumen of sheep fed whole barley (08 kg/d) by continuous feeders was increased from 61 to 134 HIM by supplementing the feed with urea (30 g/kg). This change caused a 90% increase in the rate of degradation of rolled barley, and smaller increases in the rates of degradation of protein and plant fibre in the rumen. The total viable count and numbers of pectinolytic bacteria in rumen fluid increased with the urea supplement. Enzyme studies indicated that NAD-linked glutamate dehydrogenase was the main pathway of NH3 assimilation by rumen bacteria at both NH3 concentrations. Glutamate was the main free amino acid found in the rumen at low NH3 but, despite the low activity of alanine dehydrogenase and glutamate-pyruvate aminotransferase, alanine was the principal amino acid at high NH3 concentrations. Hydrolytic rumen bacteria may require the higher NH3 concentration either for effective NH3 assimilation by an unknown mechanism involving alanine or for full expression of enzyme activity.  相似文献   

16.
In the present study, the effects of different forage-to-concentrate ratios (F:C) and an alkyl polyglycoside (APG) supplementation on parameters of rumen and blood metabolism were investigated in goats. A 2 x 2 factorial experiment was arranged within a 4 x 4 Latin square design (four 22-day periods), using four wether goats equipped with permanent ruminal cannulas. The experimental diets included two F:C levels (40:60 vs. 60:40), and two APG supplementation levels (None or 13 ml APG daily per animal). Rumen contents and blood samples were collected at the end of each period. Dietary F:C alteration affected plasma urea and influenced the proportions of leucine, histidine, arginine, glycine, proline, alanine, valine, phenylalanine, cysteine and tyrosine in rumen content, and the proportions of methionine, threonine and proline in solid-associated bacteria (SAB) significantly. Dietary APG decreased the proportions of valine and phenylalanine in rumen content, and the histidine content of liquid-associated bacteria. The interaction between dietary F:C and APG was significant for the proportions of glycine and alanine in rumen content, and the proportions of lysine and threonine in SAB. The proportion of lysine was greater, but the proportion of threonine was less in SAB for goats fed high F:C diet without APG supplementation. The proportions of plasma free amino acids and glucose concentration were not affected by experimental treatments. These results indicated that dietary APG addition affected the amino acid composition of the rumen content and ruminal bacteria, but this depended on the dietary F:C ratio. It is necessary to validate the effectiveness of dietary APG supplementation in further studies with more animals.  相似文献   

17.
An experiment was conducted to assess the effect of soybean agglutinin dosage level on growth, body composition, plasma lipids, glucose, urea nitrogen content and aminotransferase activities in rats. Male and female rats (n=60) weaned at 19 d were given a dose of 0, 3.5, 7.0, 10.5, or 14.0 mg soybean agglutinin by gastric infusion once daily for 10 days. With increasing doses of soybean agglutinin, body weight, lipid content of carcass, spleen and kidneys relative dry weights decreased, while small intestine and pancreatic weight, the contents of urea nitrogen and triglyceride, and the activities of aspartate aminotransferase linearly increased in plasma. Though soybean agglutinin decreased plasma insulin content, changes in plasma glucose content due to soybean agglutinin were not detected. It is suggested that dietary soybean agglutinin may affect the secretion of other hormones besides insulin, which modulate blood glucose reserves. In conclusion, consumption of soybean agglutinin resulted in a depletion of lipid and an overgrowth of small intestine and pancreas in rats. Meanwhile, poor growth of spleen and kidneys was observed in the soybean agglutinin-fed rats.  相似文献   

18.
Two experiments were conducted to study the relationship of blood plasma urea nitrogen (PUN) concentrations with NH3, urea nitrogen, K, Mg, P, Ca, and Na concentrations in fluid of preovulatory follicles (experiment 1) and the relationships of PUN concentration and stage of estrus cycle with ammonia and urea nitrogen concentrations in uterine fluids (experiment 2) in early lactation dairy cows. Mean PUN levels were used to distribute cows into two groups: cows with PUN>or=20 mg/dl (HPUN), and cows with PUN<20 mg/dl (LPUN). In experiment 1, blood and follicular fluids from preovulatory follicles of 38 early lactation dairy cows were collected on the day of estrus (day 0) 4h after feed was offered. Follicular fluid NH3 was higher (P<0.01) in HPUN cows (339.0 micromol/L+/-72.2) compared to LPUN cows (93.9 micromol/L+/-13.1). Follicular fluid urea N was higher (P<0.001) in HPUN cows (22.4 mg/dl+/-0.4) compared to LPUN cows (17.0 mg/dl+/-0.3). PUN and follicular fluid urea N were correlated (r2=0.86) within cows. In experiment 2, blood and uterine fluids were collected from 30 cows on day 0 and on day 7. Uterine fluid NH3 was higher (P=0.05) in HPUN cows (1562 micromol/L+/-202) than in LPUN cows (1082 micromol/L+/-202) on day 7, but not on day 0. Uterine fluid urea N was higher (P<0.001) in HPUN cows than in LPUN cows on day 0 (26.9 mg/dl+/-1.3 and 20.4 mg/dl+/-0.7) and day 7 (26.5 mg/dl+/-1.1 and 21.4 mg/dl+/-1.1). There was a correlation (r2=0.17) between PUN and uterine fluid urea N within cows. The results of this study indicate that high PUN concentrations were associated with elevated NH3 and urea N concentrations in the preovulatory follicular fluids on the day of estrus and in the uterine fluid during the luteal phase of the estrous cycle in early lactation dairy cows. Elevated NH3 or urea N concentrations in the reproductive fluids may contribute to reproductive inefficiency in dairy cows with elevated plasma urea nitrogen due to embryo toxicity.  相似文献   

19.
The effect of mild stress on various plasma metabolites in the rat has been studied. Mild stress resulted in significant decreases in liver size and glycogen content, as well as in an increase of blood glucose. In addition, plasma lactate, insulin, glycerol and urea, as well as a number of amino acids were altered by stress. These data indicate that minimal stress can have major effects upon the composition of blood, and suggest the need for strict precautions on the handling of animals during blood sampling. The site of blood extraction--tail tip vs. neck--was also found to have a significant effect on plasma lactate, glucose and urea concentrations. In stressed animals the differences between tail- and neck blood composition were increased.  相似文献   

20.
Recombinant human erythropoietin (rHuEPO) was purified from the conditioned media of Chinese hamster ovary cells with a transfected human erythropoietin gene. We investigated the effects of the rHuEPO in rats with renal anemia induced by partial nephrectomy. Five-sixth nephrectomy resulted in renal failure with anemia. Twenty-five days after the operation plasma urea nitrogen was increased about 2.5 times, and the red blood cell count, hematocrit, and hemoglobin concentration fell to 85% of normal. The reticulocyte count and plasma erythropoietin level did not change such as they do in patients with anemia due to chronic renal failure. Both total red blood cell volume and the plasma iron turnover rate were depressed in five-sixth nephrectomized rats compared with normal rats.The five-sixth nephrectomized rats were injected with rHuEPO (60 IU/kg) intravenously every second day for a total of six injections. After three injections of rHuEPO, circulation volume of total red blood cells was increased from 9.9 ml to 14.6 ml, and the plasma iron turnover rate was increased from 1.03 mg/kg/day to 2.12 mg/kg/day, and the reticulocyte count was also increased. After six injections, a marked increase of the red blood cell count, hematocrit, and hemoglobin concentration were observed. Plasma urea nitrogen and the creatinine levels as indications for renal function did not change after rHuEPO administration in both normal and five-sixth nephrectomized rats.In conclusion rHuEPO has a potent erythropoietic action and it is possible to cure the anemia caused by renal failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号