首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to determine pregnancy rates in mares inseminated 1) with 5, 25 and 500 x 10(6) progressively motile spermatozoa (pms), or 2) with 25 x 10(6) sex-sorted cells. In Experiment 1, mares were assigned to 1 of 3 treatments: Group 1 (n=20) was inseminated into the uterine body with 500 x 10(6) pms. Group 2 (n=21) and Group 3 (n=20) were inseminated into the tip of the uterine horn ipsilateral to the preovulatory follicle with 25 and 5 x 10(6) pms, respectively. Mares in all 3 groups were inseminated either 40 (n=32) or 34 h (n=29) after GnRH administration. More mares became pregnant when inseminated with 500 x 10(6) (18/20 = 90%) than with 25 x 10(6) pms (12/21 = 57%; P<0.05), but pregnancy rates were similar for mares inseminated with 25 x 10(6) vs 5 x 10(6) pms (7/20 = 35%) (P>0.1). In Experiment 2, mares were assigned to 1 of 2 treatments: Group A (n=11) was inseminated with 25 x 10(6) spermatozoa sorted into X and Y chromosome-bearing populations in a skimmilk extender. Group B (n=10) mares were inseminated similarly except that spermatozoa were sorted into the skimmilk extender + 4% egg yolk. Inseminations were performed 34 h after GnRH administration. Freshly collected semen was incubated in 224 microM Hoechst 33342 at 400 x 10(6) sperm/mL in HBGM-3 for 1 hr at 35 degrees C and then diluted to 100 x 10(6) sperm/mL for sorting. Sperm were sorted by sex using flow cytometer/cell sorters. Spermatozoa were collected at approximately 900 cells/sec into either the extender alone (Group A) or extender + 4% egg yolk (Group B), centrifuged and suspended to 25 x 10 sperm/mL and immediately inseminated. Pregnancy rates were similar (P>0.1) between the sperm treatments (extender alone = 13/10, 30% vs 4% EY + extender = 5/10, 50%). Based on ultrasonography, fetal sex at 60 to 70 d correlated perfectly with the sex of the sperm inseminated, demonstrating that foals of predetermined sex can be obtained following nonsurgical insemination with sexed spermatozoa.  相似文献   

2.
A breeding trial was conducted to evaluate the effect of in vitro storage time and temperature on fertilizing capacity of equine spermatozoa. Semen obtained from one stallion and diluted with skim milk-glucose extender was used to artificially inseminate 45 estrussynchronized mares. The mares were assigned to one of three treatment groups (15 mares per group): 1) insemination with fresh semen (collected within 0.5 h of use), 2) insemination with semen stored for 24 h at 20 degrees C or 3) insemination with semen stored for 24 h at 5 degrees C. The mares were inseminated daily during estrus, from the detection of a 35-mm follicle until ovulation, with 250 x 10(6) progressively motile spermatozoa (based on initial sperm motility of fresh semen). Semen samples (n = 35) were evaluated prior to insemination for percentages of total sperm motility (TSM), progressive sperm motility (PSM) and sperm velocity (SV). Single-cycle 15-d pregnancy rates. resulting from insemination with fresh semen, from fresh semen stored for 24 h at 20 degrees C or from semen stored for 24 h at 5 degrees C were the same (11 15 ; 73%). Mean diameters (mm) of 15-d embryonic vesicles were not different (P>0.05) among these three treatment groups (21.5 +/- 2.9, 19.6 +/- 2.6 and 20.5 +/- 3.6, respectively). Ten pregnant mares were aborted on Day 15 of gestation for use in another project. The pregnancy status of the 23 remaining pregnant mares was again determined at 35 to 40 d and 55 to 60 d of gestation. No pregnancy losses occurred during this time period. Mean TSM percentages were different (P<0.05) among the three groups: the fresh semen percentage was 89 +/- 2, semen stored for 24 h at 20 degrees C was 57 +/- 11 and semen stored for 24 h at 5 degrees C was 80 +/- 6. Similar differences were found for mean PSM and SV. Semen storage at either 20 or 5 degrees C for 24 h had no apparent effect on the fertilizing capacity of the extended semen samples; however, the reduction in all motility parameters tested was more dramatic in semen stored at 20 degrees C than that stored at 5 degrees C.  相似文献   

3.
Sperm transport and survival in the mare   总被引:1,自引:0,他引:1  
Following the deposition of semen in the mares uterus, spermatozoa must be transported to the site of fertilization, be maintained in the female tract until ovulation occurs, and be prepared to fertilize the released ovum. Sperm motility, myometrial contractions, and a spontaneous post-mating uterine inflammation are important factors for the transport and survival of spermatozoa in the mares reproductive tract. Fertilizable sperm are present in the oviduct within 4 hours after insemination. At this time, the uterus is the site of a hostile inflammatory environment. Our data suggest that spermatozoa trigger an influx of polymorphonuclear neutrophils (PMNs) into the uterine lumen via activation of complement. Furthermore, seminal plasma appears to have a modulatory effect on the post-mating inflammation through its suppressive effect on PMN chemotaxis and migration. Spermatozoa that safely have reached the oviduct can be stored in a functional state for several days, but prolonged sperm storage in the female tract is not required for capacitation and fertilization in the horse. The caudal isthmus has been proposed as a sperm reservoir in the mare. The pattern of sperm transport and survival of spermatozoa in the mares reproductive tract are different between fertile and subfertile stallions, between fertile and some infertile mares, and between fresh and frozen-thawed semen. Possible explanations for these differences include a selective phagocytosis of damaged or dead spermatozoa, impaired myometrial activity in subfertile mares, bio-physiological changes of spermatozoa during cryopreservation, and the removal of seminal plasma during cryopreservation of equine semen.  相似文献   

4.
A breeding trial was conducted to determine if a semen extender containing polymixin-B sulfate would improve the fertility of a stallion with seminal vesiculitis due to Pseudomonas aeruginosa . Twenty-three mares were bred to the stallion by one of three methods: artificial insemination with raw semen (Group 1, n = 10), artificial insemination with semen mixed 1:1 with a nonfat dry skim milk/glucose extender containing 1000 units/ml polymixin-B sulfate (Group 2, n = 9), or natural service immediately following infusion of the uterus with 100 ml of the same extender (Group 3, n = 4). Artificial breedings contained a minimum insemination dose of 500 x 10(6) progressively motile spermatozoa. All mares were bred every other day while in estrus. Pregnancy status was determined by transrectal ultrasound examination 15 d after the last breeding. First-cycle pregnancy rate for Group 2 mares (78%) was greater (P < 0.01) than for Group 1 mares (10%). There was a tendency (P = 0.10) for the pregnancy rate of Group 3 mares (50%) to be greater than Group 1 mares. The use of a semen extender containing polymixin-B sulfate improved the fertility of this stallion.  相似文献   

5.
Insemination of mares with bacteria-free equine spermatozoa results in an influx of polymorphonuclear neutrophils (PMNs) into the uterine lumen. In vitro studies have demonstrated that equine spermatozoa activate complement, resulting in cleavage of factors C5a and C3b. Since uterine secretion is rich in complement, it is likely that an interaction between spermatozoa and uterine secretion results in C5a-mediated chemotaxis and migration of PMNs into the uterine lumen. Once in the uterine lumen, the PMNs phagocytize bacteria and spermatozoa, which is an important part of sperm elimination from the reproductive tract. It is not clear how the spermatozoa are opsonized, or if phagocytosis of equine spermatozoa is a selective or non-selective process. Breeding-induced endometritis appears to be both up and down regulated by seminal components. A modulatory role on the inflammation has been suggested for equine seminal plasma. Seminal plasma suppressed complement activation, PMN-chemotaxis and phagocytosis in vitro. Preliminary in vivo experiments also support a suppressive role of seminal plasma in breeding-induced endometritis. The duration but not the magnitude of the PMN-influx into the uterine lumen was shortened when seminal plasma was included in an insemination dose. The presence of PMNs in the uterus affects the motion characteristics of spermatozoa in vitro. Both progressive motility and mean path velocity were impaired when spermatozoa were incubated in uterine secretion from mares with ongoing breeding-induced endometritis. The binding of spermatozoa to PMNs was prominent in all samples collected from mares with an ongoing endometritis. The motility remained impaired, but the binding of the spermatozoa to PMNs was reduced when the spermatozoa were incubated in uterine secretion in the presence of seminal plasma. Preliminary characterization of the immune-suppressive component in seminal plasma suggests that it is one or more molecule(s) with a molecular weight between 50 and 100 kDa, partially inactivated by charcoal stripping and partially heat-inactivated at 95 degrees C for 45 min.  相似文献   

6.
The fertility of frozen-thawed and fresh semen from each of three stallions was compared in an experiment with a randomized block design using 128 mares. Semen was collected every third day, extended in lactose-EDTA-egg yolk extender at a concentration of 500 × 106 progressively motile sperm per 1.0 ml, and frozen in individual-dose, 1.0-ml straws (1.9 mm × 267 mm). The same stallions were collected daily for inseminations with fresh semen. For each insemination dose with fresh semen, 300 × 106 progressively motile sperm were added to 10 ml of heated skim milk extender. Mares were inseminated daily from the second day of estrus through the end of estrus. Of 52 ejaculates processed and frozen, 38% were discarded because < 35% of the sperm were progressively motile after thawing. Based on rectal palpations on day 50 post-ovulation, pregnancy rates for inseminations during one estrus to semen from the three stallions were 17, 33 and 35% for frozen-thawed semen and 60, 62 and 64% for fresh semen. Pregnancy rates with frozen semen from two of the three stallions were 54% of the rates attained with fresh semen.  相似文献   

7.
TRIS-glucose or skim milk extenders are most commonly used for cryopreserving goat sperm. The aim of this study was to compare the ability of two extenders based on TRIS and skimmed milk buffer to maintain sperm viability after cryopreservation. Goat semen samples (n=110) were frozen with TRIS and with milk extender and thaw. Sperm motion parameters, morphology and acrosomal integrity were assessed in fresh and frozen-thawed samples by Sperm Class Analyzer (SCA) and Diff-Quik and Spermac staining techniques. Pregnancy rates were obtained after cervical insemination with frozen semen doses. The cryopreservation process had a significant effect on acrosome and kinematic parameters. TRIS extender provided more effective preservation of total motility, velocity parameters and amplitude of lateral head displacement after freezing. The percentage of acrosome intact spermatozoa was significantly higher in samples diluted with milk extender. In the insemination doses, mean values of velocity parameters and lateral head displacement were higher in doses processed in TRIS. Spermatozoa frozen in milk extender was mathematically greater than for those frozen with TRIS extenders, though no significant difference exists. We conclude that post-thaw kinematic parameters and acrosome integrity assessed after 1h of incubation was acceptable in both extenders which indicated the feasibility of cryopreserving goat spermatozoa. TRIS extender results in better in vitro performance compared to milk, though these improvements were not reflected in fertility results. Semen doses cryopreserved in milk extender provided greater pregnancy rates after intra-cervical insemination compared to those in TRIS extender (52.4% versus 42.9%).  相似文献   

8.
Semen from 3 stallions was extended using 2 methods (Kenney extender and a modified Kenney extender), slowly cooled, and stored for 41 ± 6 (s.d.) h before insemination. An insemination dose (40 ml) contained 1.5-2 billion spermatozoa. In the experiment, 26 mares were inseminated in 30 cycles. The pregnancy rate per cycle obtained with sperm stored in the Kenney extender was 87% (n=15). When the semen was extended with the modified extender, centrifuged and stored, the pregnancy rate was 60% (n=15). Inseminations were done every other day until ovulation was detected. If a mare ovulated more than 24 h after the last insemination, she was inseminated also after ovulation. The single-cycle pregnancy rate was 58% when the mares were inseminated only before ovulation (n=19) but the rate was 100% when the inseminations were done both before and after ovulation (n=9) or only after ovulation (n=2). The difference in pregnancy rates was significant (p<0.05), indicating that postovula-tory inseminations probably serve to ensure the pregnancies. The extending and handling methods used in this study resulted in a combined pregnancy rate of 73%, and appear thus to be useful for storing stallion semen for approximately 2 days.  相似文献   

9.
Transrectal color Doppler sonography was used to evaluate the effect of intrauterine infusion of skim milk semen extender, seminal plasma and raw semen on the endometrium and blood flow in the uterine and ovarian arteries in mares. Six Trotter mares (mean age: 12 years) were examined during estrus in three cycles. Each mare received an intrauterine infusion of 20 ml of skim milk semen extender, seminal plasma or raw semen during estrus in one of three cycles. Blood flow measurements in both uterine and ovarian arteries and the determination of intrauterine fluid via sonography were performed before each infusion and 1, 3, 6, 12, and 24 h after infusion. Forty-eight hours later, the intrauterine infusion and measurements were repeated using the same time intervals. Changes in blood flow were detected using transrectal color Doppler sonography and were evaluated using the mean time-averaged maximum velocity (TAMV) of the blood flow. Cytological and bacteriological examination of uterine swabs performed 48 h after the second infusion revealed less inflammation and bacterial growth in mares infused with skim milk semen extender than in those infused with seminal plasma or raw semen. There was an increase in intrauterine fluid as early as 1 h after infusion of any of the substances. The infusion of skim milk semen extender had no effect on uterine blood flow. Within 1 h after infusion of seminal plasma or raw semen, there was an increase in the TAMV values of both uterine arteries (P<0.05). In contrast, ovarian blood flow increased only in the artery ipsilateral to the preovulatory follicle and only after the infusion of raw semen (P<0.05). In conclusion, the changes in uterine perfusion observed after intrauterine infusion may be associated with endometrial inflammation and vasodilatory components in the seminal plasma, whereas the changes seen in ovarian blood flow are possibly attributable to the interaction between sperm and oviduct.  相似文献   

10.
The first (1 to 3) sperm-rich fractions of the ejaculate were collected from 4 stallions using an open-ended vagina. The volume of the collected fractions was 12 ± 8 ml with a density of 475 ± 200 million spermatozoa/ml. Before freezing, the semen was diluted with a skim-milk based extender 1:1 to 1: 8 (volume of semen: volume of extender), depending on the initial sperm concentration to achieve a final concentration of 100 million/ml. The total number of spermatozoa in an insemination dose ranged from 0.7 to 1 billion spermatozoa. Within 12 h after ovulation, 48 mares were inseminated in 70 cycles. The total single-cycle pregnancy rate at day 21 was 24%, but varied from 10% to 33% per cycle among the stallions.  相似文献   

11.
Freshly ejaculated bull semen was centrifuged and spermatozoa were resuspended in modified sperm TALP. Bovine uterine tube epithelial cell monolayers (BUTC) were obtained from cows in the periovulatory phase of estrus. In Experiment 1, sperm aliquots were assigned to culture wells containing either BUTC, BUTC-conditioned TALP, or control TALP. Sperm heads attached to the monolayers within 1 h of co-culture. Attached spermatozoa showed vigorous tail motion. At 5, 8 and 11 h of incubation at 39 degrees C, the percentage of unattached sperm cells with intact acrosome membranes and percentage of motility of these cells was measured. Sperm-BUTC co-cultures were also fixed in situ for electron microscopy. Unattached spermatozoa in co-culture had more (P<0.05) acrosomal membrane loss, showed hyperactive motion and had an overall decrease in motility as compared to sperm cells in control or conditioned medium. Evaluation by electron microscopy showed BUTC attached spermatozoa to behave in the co-culture system similar to reports for spermatozoa found in uterine tubes in vivo. Microvilli of the BUTC appeared to actively entrap the spermatozoa. Mucus-type granules could be seen on acrosomal regions and vesiculation of acrosomal membranes was seen in some cells. In Experiment 2, 43% of the 12 x 10(6) sperm cells added to 2-cm(2) BUTC bound within 4 h of co-culture. By 7 h of co-culture 19% of the previously bound sperm cells had been released from the BUTC. Released cells had limited motility and were mostly dead (73%). Sperm cells remaining on the monolayer at 7 h showed vigorous tail motion and were gradually released from the BUTC over 48 h. Spermatozoa in co-culture interacted with the BUTC in a manner much like that seen in vivo, and sperm capacitation changes were stimulated by this interaction.  相似文献   

12.
The fertility of frozen-thawed and fresh semen from three stallions was compared in a trial using a randomized block design and 90 mares for 108 cycles. Semen was collected every third day, diluted to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium, and centrifuged. The cells were resuspended at 700 x 10(6) progressively motile sperm/1.0 ml of added lactose-EDTA-egg yolk extender containing 4% glycerol, packaged by placing 0.55 ml into polypropylene straws, and frozen. Semen was thawed by immersion in 75 degrees C water for 10 sec. All of the 43 ejaculates collected were frozen, but 21 were discarded because progressive sperm motility was <35% immediately after thawing or <40% after 30 min of incubation at 37 degrees C. semen from the same stallions was collected daily for inseminations with fresh semen. Semen containing 200 x 10(6) progressively motile sperm was added to 10 ml of heated skimmilk extender. Mares were inseminated daily starting on the third day of estrus or when a >/=4-cm follicle was detected, whichever came later, and continuing through the end of estrus or for nine days. Based on palpation per rectum on day 50 postovulation, the pregnancy rates from inseminations during one estrus were 50, 56 and 61% with frozen semen and 67, 67 and 61% with fresh semen (P>0.05) from the three stallions, respectively. Thus, mean pregnancy rate with frozen semen was 86% of the rate attained with fresh semen.  相似文献   

13.
The effects of extender and storage at 20 degrees C on equine spermatozoa were evaluated in two experiments using embryo recovery as the end point. In both experiments, inseminations were every other day, starting on Day 2 or 3 of estrus or after a 35-mm follicle was detected, with 250 x 10(6) progressively motile cells (based on initial evaluation). In Experiment 1, semen from two stallions was used to compare the motility and fertility of spermatozoa maintained in a) heated skim milk extender at 37 degrees C with insemination in <1 h; b) E-Z Mixin extender at 37 degrees C with insemination in <1 h; and c) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 12 h at 20 degrees C. The percentage of motile spermatozoa was 34% after 12 h compared to 55% at 0 h (P < 0.05). However, the percentage of mares from which an embryo was recovered 6.5 d after ovulation was 62, 56, and 50% for Treatments A, B, and C (P > 0.05). In Experiment 2, semen from three stallions was used to compare the motility and fertility of spermatozoa in a) E-Z Mixin extender at 37 degrees C with insemination in <1 h or b) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 24 h at 20 degrees C. The percentage of motile spermatozoa was 17% after 24 h compared to 54% at 0 h (P < 0.05). There was no difference between treatments (P > 0.05) in the percentage of mares from which an embryo was recovered 6.0 d after ovulation (68 vs 62%) or among stallions. Thus, stallion semen extended in E-Z Mixin was held at 20 degrees C for 24 h without a marked decline in fertility.  相似文献   

14.
Sperm transport and survival in the mare: a review   总被引:2,自引:0,他引:2  
After the deposition of semen in the mare's uterus, spermatozoa must be transported to the site of fertilization, be maintained in the female tract until ovulation occurs, and be prepared to fertilize the released ovum. Sperm motility, myometrial contractions, and a spontaneous post-mating uterine inflammation are important factors for the transport and survival of spermatozoa in the mare's reproductive tract. Fertilizable sperm are present in the oviduct within 4 h after insemination. At this time, the uterus is the site of a hostile inflammatory environment. Our data suggest that spermatozoa trigger an influx of polymorphonuclear neutrophils (PMNs) into the uterine lumen via activation of complement. Furthermore, semen plasma appears to have a modulatory effect on the post-mating inflammation through its suppressive effect on PMN chemotaxis and migration. Spermatozoa that safely have reached the oviduct can be stored in a functional state for several days, but prolonged sperm storage in the female tract is not required for capacitation and fertilization in the horse. The caudal isthmus has been proposed as a sperm reservoir in the mare. The pattern of sperm transport and survival of spermatozoa in the mare's reproductive tract are different between fertile and subfertile stallions, between fertile and some infertile mares, and between fresh and frozen/thawed semen. Possible explanations for these differences include a selective phagocytosis of damaged or dead spermatozoa, impaired myometrial activity in subfertile mares, bio-physiological changes in spermatozoa during cryopreservation, and the removal of semen plasma during cryopreservation of equine semen.  相似文献   

15.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

16.
Two trials were conducted to investigate the effects of intrauterine infusion of PGE2 and uterine horn insemination on pregnancy rates in mares achieved by breeding with a suboptimal number of normal spermatozoa. Estrus was synchronized and mares were teased daily with a stallion to detect estrus. Mares in estrus were examined by transrectal palpation and ultrasonography to monitor follicular status. On the first day a 35-mm diameter follicle was present, hCG (1500 IU, iv) was administered and the mares were bred the next day. Mares (Trial 1, n = 34; Trial 2, n = 28) were inseminated with 25 million total spermatozoa from either a stallion with good semen quality (Trial 1) or poor semen quality (Trial 2). In each trial, mares were assigned to 1 of 4 treatment groups as follows: Group PGE-HI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; Group PGE-BI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body; Group SAL-HI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; or Group SAL-BI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body. After breeding, mares were examined daily by transrectal ultrasonography to confirm ovulation, and were re-examined 14 to 16 d after ovulation for pregnancy status. Data were analyzed by Chi-square. Overall pregnancy rates were 59% for stallion 1 and 29% for stallion 2. Group pregnancy rates did not differ for mares bred by either stallion (P > 0.10). Pregnancy rates were not altered by horn insemination for either stallion (P > 0.10). Intrauterine infusion of PGE2 improved pregnancy rate in mares bred by the stallion with good quality semen (P < 0.05), but did not alter pregnancy rate in mares bred by the stallion with poor quality semen (P > 0.10). Further research is warranted to determine if intrauterine infusion of PGE2 will enhance spermatozoal colonization of the oviduct and pregnancy rates in mares, and if PGE-treatment will improve pregnancy rates achieved by subfertile stallions.  相似文献   

17.
Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P < 0.05). Fructose was inferior for protecting sperm during cryopreservation when compared to sorbitol and glucose (P < 0.05). Although the viability, motility and acrosome integrity of sperm cryopreserved with a glucose-containing extender did not significantly differ from sperm frozen in the sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender.  相似文献   

18.
The sperm-rich fraction of stallion semen was collected in an AV and, after dilution in an extender, was cooled to 2--5 degrees C before placing in aluminium tubes for freezing in liquid nitrogen for several hours or months. The spermatozoa in about 200 ejaculates from 36 stallions were examined to compare their survival time, motility and velocity before and after thawing. According to the various indices used, 20% of stallions produced spermatozoa which were unaffected, 60% partly but not seriously affected and the remainder completely inactivated. The velocity of spermatozoa decreased from 51.4 micrometers/sec in the fresh semen to 36.8 micrometers/sec in the thawed semen. The fertilizing capacity of the spermatozoa of frozen--thawed semen of 5 stallions was examined in 14 mares. In all, 65 inseminations were made and the blastocysts were recovered non-surgically from the uterus 7--9 days after ovulation. A 20% drop in blastocyst recovery occurred as the result of freezing and thawing, when the same mares were used for insemination of raw and frozen--thawed semen. The capacity to freeze sucessfully proved to be a specific characteristic of certain stallions. Degenerate blastocysts were not recovered but those resulting from artificial insemination of frozen semen were much smaller in diameter than those following insemination of raw semen.  相似文献   

19.
Grossfeld R  Klinc P  Sieg B  Rath D 《Theriogenology》2005,63(8):2269-2277
The aim of the present study was to ascertain whether multiparous sows could successfully be inseminated with sexed semen non-surgically. Spermatozoa were stained with Hoechst 33342 and separated flowcytometrically in X- and Y-chromosome bearing sperm populations employing the Beltsville Sperm Sexing Technology (BSST). After weaning, estrus was induced in sows with PMSG and hCG. Animals were inseminated once per estrus non-surgically with a specially designed catheter into the tip of the uterine horn, employing 50x10(6) of either sexed or non-sexed spermatozoa diluted in 2 ml Androhep. Pregnant sows were allowed to go to term. Mean pregnancy rate from inseminations with unsexed spermatozoa was 54.5% whereas inseminations with sexed spermatozoa resulted in 33.3% pregnant sows. All but one piglet born after insemination with sexed semen were of the predicted sex. The sex of those piglets born after inseminations with non-sexed spermatozoa was 61.1% for male and 38.9% for female sex. It is concluded that non-surgically inseminations with flowcytometrically sexed spermatozoa can be conducted successfully.  相似文献   

20.
Whole ejaculate or sperm-rich fraction, collected from four sexually mature boars, was frozen in an extender containing lactose-hen egg yolk with glycerol (lactose-HEY-G) or extender containing lactose, lyophilized lipoprotein fractions isolated from ostrich egg yolk and glycerol (lactose-LPFo-G), and Orvus Es Paste, respectively. The sperm samples were also frozen in a standard boar semen extender (Kortowo-3), without the addition of cryoprotective substances. Sperm DNA integrity was assessed using a modified neutral comet assay. Sperm characteristics such as motility, plasma membrane integrity (SYBR-14/PI), mitochondrial function (rhodamine 123) and acrosome integrity were monitored. Freezing-thawing caused a significant increase (P<0.05) in sperm DNA fragmentation, irrespective of the procedures of ejaculate collection and extender type. Sperm DNA fragmentation was significantly lower (P<0.05) in the whole ejaculate compared with the sperm-rich fraction, indicating that spermatozoa maintained in the whole seminal plasma prior to its removal for freezing-thawing procedure were less vulnerable to cryo-induced DNA fragmentation. Furthermore, spermatozoa frozen in lactose-HEY-G or lactose-LPFo-G extender exhibited lower (P<0.05) DNA fragmentation than those frozen in the absence of cryoprotective substances. The levels of sperm DNA damage, as expressed by comet tail length and tail moment values, were significantly higher (P<0.05) in sperm samples frozen in the absence of cryoprotective substances. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. It can be suggested that evaluation of DNA integrity, coupled with different sperm characteristics such as motility, plasma membrane integrity and mitochondrial function, may aid in determining the quality of frozen-thawed boar semen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号