首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the feasibility of using a cationic nonviral gene carrier in endothelial cells for enhancing gene expression by the addition of an integrin-binding RGD peptide. A 4-branched cationic polymer of poly( N,N-dimethylaminopropylacrylamide) (star vector), developed as a gene carrier, could complex with the luciferase-encoding plasmid DNA under a charge ratio of 5 (vector/pDNA) to form polymer/DNA complexes (polyplexes). The addition of the RGD-containing peptide (GRGDNP) to the polyplex solution led to a decrease in the zeta-potential from ca. +30 to +20 mV along with the reduction in the particle size from ca. 300 to 200 nm. Additionally, a marked inhibition of polyplex aggregation was observed, indicating the coating of the polyplex surface with RGD peptides. A transfection study on endothelial cells showed that the luciferase activity increased with the amount of RGD peptides added to the polyplexes and exhibited minimal cellular cytotoxicity. The transfection activity further increased when cyclic RGD peptides (RGDFV) were used; the activity with RGD peptide addition was approximately 8-fold compared to that without RGD peptide addition. Gene delivery to endothelial cells was significantly enhanced by only the addition of RGD peptides to star vector-based polyplexes.  相似文献   

2.
Lipoplexes constituted by calf-thymus DNA (CT-DNA) and mixed cationic liposomes consisting of varying proportions of the cationic lipid 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol) and the zwitterionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphoetanolamine (DOPE) have been analyzed by means of electrophoretic mobility, SAXS, and fluorescence anisotropy experiments, as well as by theoretically calculated phase diagrams. Both experimental and theoretical studies have been run at several liposome and lipoplex compositions, defined in terms of cationic lipid molar fraction, α, and either the mass or charge ratios of the lipoplex, respectively. The experimental electrochemical results indicate that DC-Chol/DOPE liposomes, with a mean hydrodynamic diameter of around (120 ± 10) nm, compact and condense DNA fragments at their cationic surfaces by means of a strong entropically driven electrostatic interaction. Furthermore, the positive charges of cationic liposomes are compensated by the negative charges of DNA phosphate groups at the isoneutrality L/D ratio, (L/D)(?), which decreases with the cationic lipid content of the mixed liposome, for a given DNA concentration. This inversion of sign process has been also studied by means of the phase diagrams calculated with the theoretical model, which confirms all the experimental results. SAXS diffractograms, run at several lipoplex compositions, reveal that, irrespectively of the lipoplex charge ratio, DC-Chol/DOPE-DNA lipoplexes show a lamellar structure, L(α), when the cationic lipid content on the mixed liposomes α ≥ 0.4, while for a lower content (α = 0.2) the lipoplexes show an inverted hexagonal structure, H(II), usually related with improved cell transfection efficiency. A similar conclusion is reached from fluorescence anisotropy results, which indicate that the fluidity on liposome and lipoplexes membrane, also related with better transfection results, increases as long as the cationic lipid content decreases.  相似文献   

3.
重组病毒载体系统因为具有高效的基因转移能力得到了广泛应用,而病毒包装细胞的转染是重组病毒制备过程中的关键步骤。优化了脂质体DC-Chol/DOPE介导的转染常用的病毒包装细胞系HEK293FT的实验条件,比较了DC-Chol/DOPE、Lipofectamine2000和磷酸钙共沉淀法转染细胞的效率,并且比较了用DC-Chol/DOPE和磷酸钙共沉淀法转染293FT细胞制备重组腺病毒的结果,发现DC-Chol/DOPE对293FT细胞的转染效率以及最终收获的病毒滴度都远高于磷酸钙共沉淀法转染。所以,利用DC-Chol/DOPE转染293FT细胞制备重组病毒是一种简单、高效、成本低廉的方法。  相似文献   

4.
Interior tertiary amine groups of PAMAM-OH dendrimers (hydroxyl-terminated polyamidoamine, PAMAM) were modified by methylation to make these polymers have a more cationic character, which enabled electrostatic interaction between PAMAM-OH and plasmid DNA. A methylation reaction was dose-dependent, producing internally quaternized PAMAM-OH (QPAMAM-OH), thereby making tertiary amine/quaternary amine ratio adjustment possible. More highly condensed particles of plasmid DNA were formed as the degree of quaternization increased, whereas unmodified polymer (PAMAM-OH) could not. The location of positive charges in the internal position of QPAMAM-OH resulted in the formation of neutral polyplexes in which zeta potential leveled off near the zero value even at high charge ratios (+/-) of 10. A light scattering experiment showed that the polyplex formed by QPAMAM-OH was very small with the size of 53.3 nm at the optimum condition. QPAMAM-OH/DNA polyplexes were round-shaped with the more compact and small particles formed as the charge ratio increased. QPAMAM-OH showed much reduced cytotoxicity compared with starburst PAMAM and branched polyethyleneimine (PEI) in which shielding of interior positive charges by surface hydroxyls might be the reason for this favorable result. These results suggest that QPAMAM-OH could be a promising tool as a nonviral vector both by itself and in conjugated form with targeting ligands.  相似文献   

5.
The interactions between DNA and chitosans varying in fractional content of acetylated units (FA), degree of polymerization (DP), and degree of ionization were investigated by several techniques, including an ethidium bromide (EtBr) fluorescence assay, gel retardation, atomic force microscopy, and dynamic and electrophoretic light scattering. The charge density of the chitosan and the number of charges per chain were found to be the dominating factors for the structure and stability of DNA-chitosan complexes. All high molecular weight chitosans condensed DNA into physically stable polyplexes; however, the properties of the complexes were strongly dependent on FA, and thereby the charge density of chitosan. By employing fully charged oligomers of constant charge density, it was shown that the complexation of DNA and stability of the polyplexes is governed by the number of cationic residues per chain. A minimum of 6-9 positive charges appeared necessary to provide interaction strength comparable to that of polycations. In contrast, further increase in the number of charges above 9 did not increase the apparent binding affinity as judged from the EtBr displacement assay. The chitosan oligomers exhibited a pH-dependent interaction with DNA, reflecting the number of ionized amino groups. The complexation of DNA and the stability of oligomer-based polyplexes became reduced above pH 7.4. Such pH-dependent dissociation of polyplexes around the physiological pH is highly relevant in gene delivery applications and might be one of the reasons for the high transfection activity of oligomer-based polyplexes observed.  相似文献   

6.
A poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) homopolymer with both thermoresponsive and cationic characteristics was applied to a vector for use in deposition transfection. PDMAEMA with a molecular weight of 2.5 × 10(5) g mol(-1) was synthesized by photoinduced radical polymerization. Polyplexes approximately 750 nm in size were formed by mixing PDMAEMA with luciferase-encoding plasmid DNA. The polyplexes had a lower critical solution temperature (LCST) of approximately 30 °C. In addition, they exhibited excellent adsorption and durability on a polystyrene surface, as confirmed by a surface chemical compositional analysis. When HeLa cells and primary cells were cultured on a substrate coated with the polyplexes, high transgene expression and cell viability of more than 90% were obtained at low charge ratios (PDMAEMA/plasmid DNA ratio) ranging from 2 to 8. In addition, transgene expression was sustained for over 2 weeks post-transfection whereas decreased expression was observed 5 days post-transfection when the conventional solution-mediated transfection method was used. Thus, high and sustained transgene expression as well as high cell viability can be realized by using small amounts of PDMAEMA as a deposition transfection material.  相似文献   

7.
Polyplexes of high stability resulting from the condensation of a plasmid DNA by a cationic polymer are widely used to develop polymer-based gene delivery systems. However, the plasmid must be released from its vector once inside the cells for an efficient expression of the exogenous gene in the cell nucleus. We have designed a disulfide-containing cationic polymer termed poly[Lys-(AEDTP)] which allowed for the formation of polyplexes and the release of the plasmid in a reductive medium. The amino groups of polylysine were substituted with 3-(2-aminoethyldithio)propionyl residues in order to have each amino group of poly[Lys-(AEDTP)] interacting with a phosphate DNA linked to the polymer backbone via a disulfide bond. As evidenced by agarose gel electrophoresis and ethidium bromide/pDNA fluorescence restoration, poly[Lys-(AEDTP)] polyplexes were decondensed and the plasmid released upon treatment with either dithiothreitol, glutathione in the presence of glutathione reductase, or the thioredoxin reductase. Electron microscopy showed that polyplexes exhibiting spherical particles of a mean size at about 100 nm were decondensed in the presence of glutathione and exhibited filamentous aggregates. Finally, we found that the transfection of 293T7 and HepG2 cells was 10- and 50-fold more efficient with poly[Lys-(AEDTP)] polyplexes, respectively, than with poly[Lys] polyplexes. These results indicate that disulfide-containing cationic polymers must be borne in mind for developing polymer-base gene delivery systems.  相似文献   

8.
Zhao X  Pan F  Zhang Z  Grant C  Ma Y  Armes SP  Tang Y  Lewis AL  Waigh T  Lu JR 《Biomacromolecules》2007,8(11):3493-3502
Although various cationic polymers have been used to condense anionically charged DNA to improve their transfection efficiency, there is still a lack of fundamental understanding about how to control the nanostructure and charge of the polyplexes formed and how to relate such information to cell transfection efficiency. In this work, we have synthesized a weak cationic and phosphorylcholine-containing diblock copolymer and used it as a model vector to deliver an antisense oligodeoxynucleotide (ODN) into HeLa cells. Small angle neutron scattering (SANS) was used to determine the copolymer/ODN polyplex structure. The SANS data revealed the formation of polyplex nanocylinders at high copolymer (N)/ODN (P) charge ratios, where N symbolizes the amine groups on the copolymer and P symbolizes the phosphate groups. However, the cylindrical lengths remained constant, indicating that the ODN binding over this region did not alter the cylindrical shape of the copolymer in solution. As the N/P ratio decreased and became close to unity the polyplex diameters remained constant, but their lengths increased substantially, suggesting the end-to-end bridging by ODN binding between copolymer cylinders. As the N/P ratios went below unity (with ODN in excess), the polyplex diameters increased substantially, indicating different ODN bridging to bundle the small polyplexes together. Transfection studies from HeLa cells indicated a steady increase in transfection efficiency with increasing cationic charge and decreasing polyplex size. Cell growth inhibition assay showed significant growth inhibition by the polyplexes coupled with weak cytotoxicity, indicating effective ODN delivery. While this study has confirmed the overall charge effect, it has also revealed progressive structural changes of the polyplexes against varying charge ratio, thereby providing useful insight into the mechanistic process behind the ODN delivery.  相似文献   

9.
One of the crucial steps in gene delivery with cationic polymers is the escape of the polymer/DNA complexes ("polyplexes") from the endosome. A possible way to enhance endosomal escape is the use of cationic polymers with a pKa around or slightly below physiological pH ("proton sponge"). We synthesized a new polymer with two tertiary amine groups in each monomeric unit [poly(2-methyl-acrylic acid 2-[(2-(dimethylamino)-ethyl)-methyl-amino]-ethyl ester), abbreviated as pDAMA]. One pKa of the monomer is approximately 9, providing cationic charge at physiological pH, and thus DNA binding properties, the other is approximately 5 and provides endosomal buffering capacity. Using dynamic light scattering and zeta potential measurements, it was shown that pDAMA is able to condense DNA in small particles with a surface charge depending on the polymer/DNA ratio. pDAMA has a substantial lower toxicity than other polymeric transfectants, but in vitro, the transfection activity of the pDAMA-based polyplexes was very low. The addition of a membrane disruptive peptide to pDAMA-based polyplexes considerably increased the transfection efficiency without adversely affecting the cytotoxicity of the system. This indicates that the pDAMA-based polyplexes alone are not able to mediate escape from the endosomes via the proton sponge mechanism. Our observations imply that the proton sponge hypothesis is not generally applicable for polymers with buffering capacity at low pH and gives rise to a reconsideration of this hypothesis.  相似文献   

10.
The purpose of this study was to explore the potential of using cationic polyethylenimine (PEI) to deliver green fluorescent protein (GFP) to protozoan parasite Toxoplasma gondii. PEI/DNA polyplexes were formed using branched PEI and pEGFP-N1 plasmid with various N/P ratios that ranged from 5 to 50. With the increment of N/P ratio, the average size of formed PEI/DNA polyplexes determined by dynamic light scattering analysis decreased from 306 to 203nm, while the surface charge of polyplexes obtained by zeta potential measurements increased from 20.2 to 36.7mV. Gene transfection efficiency modulated by N/P ratio was determined, indicating PEI/DNA polyplexes were capable of transfecting parasites. The maximal GFP expression was observed 8h post-transfection using N/P ratio of 30. To demonstrate the infectivity and potential use of GFP-expressing T. gondii, transfected parasites were inoculated to the monolayer of human foreskin fibroblast (HFF) cells. GFP-expressing tachyzoites were observed in intracellular milieu of the infected HFF cells one day after the infection. After 12-day culture, the bradyzoites expressing GFP within cysts were clearly visualized extracellularly. Our results revealed that PEI can be harnessed as an effective and inexpensive reagent to construct GFP-expressing T. gondii which has potential uses such as the study of interconversion stages and antimicrobial drug screening.  相似文献   

11.
Novel 4-branched diblock copolymers consisting of cationic chains as an inner domain and nonionic chains as an outer domain were prepared by iniferter-based living radial polymerization and evaluated as a polymeric transfectant. The cationic polymerization of 3-(N,N-dimethylamino)propyl acrylamide (DMAPAAm) using 1,2,4,5-tetrakis( N,N-diethyldithiocarbamylmethyl)benzene as a 4-functional iniferter followed by the nonionic block polymerization of N,N-dimethylacrylamide (DMAAm) afforded 4-branched diblock copolymers with controlled compositions. By changing the solution or irradiation conditions, 4-branched PDMAPAAms with molecular weights of 10,000, 20,000, and 50,000 were synthesized. In addition, by graft polymerization, PDMAPAAm-PDMAAm blocked copolymers with copolymer composition (unit ratio of DMAAm/DMAPAAm) ranging from 0.18 to 1.0 for each cationic polymer were synthesized. All polymers were shown to interact with and condense plasmid DNA to yield polymer/DNA complexes (polyplexes). A transfection study on COS-1 cells showed that the polyplexes from block copolymers with cationic chain length of approximately 50,000 and a nonionic chain length of 30,000, which were approximately 200 nm in diameter and very stable in aqueous media, had the most efficient luciferase activity with minimal cellular cytotoxicity under a charge ratio of 20 (vector/pDNA). The PDMAPAAm-PDMAAm-blocked, star-shaped polymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

12.
In vitro assays have demonstrated the capability of poly-L-lysine to protect plasmid DNA from serum nucleases and cellular lysates. Our purpose was to evaluate the stability and potency of poly-L-lysine-DNA polyplexes after intravenous injection into mice. Polyplexes consisted of 32P-radiolabeled plasmid DNA complexed with poly-L-lysine at specified charge ratios. Variations in conjugate hydrophobicity and levels of modification with polyethylene glycol were investigated. Our results show that, in contrast to in vitro studies, the systemically administered polyplexes exhibited marked DNA degradation in the vascular compartment within 5 min. Substitution of poly-L-lysine epsilon-amino sites with polyethylene glycol or hydrocarbon chains resulted in faster degradation even when complexed at higher charge (+/-) ratios. Use of excess cationic charge in the polyplexes (+/- 2.5) diminished degradation rates only slightly. An analysis was made of the strength of the poly-L-lysine:DNA interaction by competition with poly-aspartic acid. Polyplexes with the strongest binding between conjugate and DNA in the competition assay were also the most stable in blood. However, tighter binding was not enough to fully protect the polyplex in vivo and polyplex DNA was substantially degraded within 10 min. Increased polyplex stability did not correlate with improved in vivo transfection efficiency.  相似文献   

13.
Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ~ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA polyplexes based on PDMAEMA-SS-PEG-SS-PDMAEMA are highly promising for nonviral gene transfection.  相似文献   

14.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

15.
As a cationic non‐viral gene delivery vector, poly(agmatine/ N, N′‐cystamine‐bis‐acrylamide) (AGM‐CBA) showed significantly higher plasmid DNA (pDNA) transfection ability than polyethylenimine (PEI) in NIH/3T3 cells. The transfection expression of AGM‐CBA/pDNA polyplexes was found to have a non‐linear relationship with AGM‐CBA/pDNA weight ratios. To further investigate the mechanism involved in the transfection process of poly(AGM‐CBA), we used pGL3‐control luciferase reporter gene (pLUC) as a reporter pDNA in this study. The distribution of pLUC in NIH/3T3 cells and nuclei after AGM‐CBA/pLUC and PEI/pLUC transfection were determined by quantitative polymerase chain reaction (qPCR) analysis. The intracellular trafficking of the polyplexes was evaluated by cellular uptake and nuclei delivery of pLUC, and the intracellular availability was evaluated by the ratio of transfection expression to the numbers of pLUC delivered in nuclei. It was found that pLUC intracellular trafficking did not have any correlation with the transfection expression, while an excellent correlation was found between the nuclei pLUC availability and transfection expression. These results suggested that the intracellular availability of pLUC in nuclei was the rate‐limiting step for pLUC transfection expression. Further optimization of the non‐viral gene delivery system can be focused on the improvement of gene intracellular availability.  相似文献   

16.
17.
To provide colloidally stable polyplexes formed between pDNA and cationic polymers, cationic polymers have been modified with hydrophilic polymers to form a hydrophilic shell. Block copolymers of cationic and hydrophilic polymers and cationic polymers grafted with hydrophilic polymers are representative designs of such polymers. Here, we report a new design of cationic polymers and oligocationic peptide-grafted polymers. We synthesized 15 kinds of graft copolymers by varying the number of cationic charges of the peptides and their grafting density. We found that graft copolymers with less cationic peptides and less grafting density formed colloidally stable polyplexes. Interestingly, the less cationic graft copolymers bind to excess amounts of pDNA. We also found that the graft copolymers showed selectivity toward reactive enzymes affording the reaction of pDNA with nucleases, while suppressing both the replication of DNA by DNA polymerase and gene expression. The suppression of the replication and expression is considered to result from the high capacity of the graft copolymers for binding with pDNA. The polynucleotides produced by DNA polymerase or RNA polymerase would be captured by the graft copolymers to impede these enzymatic reactions.  相似文献   

18.
Poly(ethylene oxide) grafted with 1.8 kDa branched polyethylenimine (PEO-g-PEI) copolymers with varying compositions, that is, PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI, were prepared and investigated for in vitro nonviral gene transfer. Gel electrophoresis assays showed that PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI could completely inhibit DNA migration at an N/P ratio of 4/1, 4/1, and 3/1, respectively. Dynamic light scattering (DLS) and zeta potential measurements revealed that all three graft copolymers were able to effectively condense DNA into small-sized (80-245 nm) particles with moderate positive surface charges (+7.2 ~ +24.1 mV) at N/P ratios ranging from 5/1 to 40/1. The polyplex sizes and zeta-potentials intimately depended on PEO molecular weights and PEI graft densities. Notably, unlike 25 kDa PEI control, PEO-g-PEI polyplexes were stable against aggregation under physiological salt as well as 20% serum conditions due to the shielding effect of PEO. MTT assays in 293T cells demonstrated that PEO-g-PEI polyplexes had decreased cytotoxicity with increasing PEO molecular weights and decreasing PEI graft densities, wherein low cytotoxicities (cell viability >80%) were observed for polyplexes of PEO(13k)-g-22PEI, PEO(13k)-g-10PEI, and PEO(24k)-g-10PEI up to an N/P ratio of 20/1, 30/1, and 40/1, respectively. Interestingly, in vitro transfection results showed that PEO(13k)-g-10PEI polyplexes have the best transfection activity. For example, PEO(13k)-g-10PEI polyplexes formed at an N/P ratio of 20/1, which were essentially nontoxic (100% cell viability), displayed over 3- and 4-fold higher transfection efficiencies in 293T cells than 25 kDa PEI standard under serum-free and 10% serum conditions, respectively. Confocal laser scanning microscopy (CLSM) studies using Cy5-labeled DNA confirmed that these PEO-g-PEI copolymers could efficiently deliver DNA into the perinuclei region as well as into nuclei of 293T cells at an N/P ratio of 20/1 following 4 h transfection under 10% serum conditions. PEO-g-PEI polyplexes with superior colloidal stability, low cytotoxicity, and efficient transfection under serum conditions are highly promising for safe and efficient in vitro as well as in vivo gene transfection applications.  相似文献   

19.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

20.
Two major barriers that limit cationic lipids in gene delivery are low transfection efficiency and toxicity. In the present studies, we used dithiodiglycolic acid as a new tether for the polar and hydrophobic domains of a cationic lipid, cholesteryl hemidithiodiglycolyl tris(aminoethyl)amine (CHDTAEA). We compared the transfection activity and toxicity of CHDTAEA with its nondisulfide analogue and cholesteryl N-(dimethylaminoethyl) carbamate (DC-Chol). The liposomes of CHDTAEA had more than 2 orders of magnitude greater transfection activity than DC-Chol in CHO cells and 7 times greater transfection activity in SKnSH cells. CHDTAEA also demonstrated much less toxicity than the other two lipids. Dithiodiglycolic acid may act as an excellent linker in the application of cationic lipid syntheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号