首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The study aimed at evaluating the optimum dietary vitamin E requirements using DL‐α‐tocopheryl acetate in the juvenile eel, Anguilla japonica, as assessed by fish growth performance and fish body composition. Five semi‐purified experimental diets were formulated to contain 0 (TA1), 15 (TA17), 30 (TA32), 60 (TA62) and 120 (TA119 mg TA kg?1 diet on a dry matter (DM) basis in the form of DL‐α‐tocopheryl acetate (TA). After a 4‐week conditioning period, fish (15 ± 0.3 g) were randomly distributed into aquaria in groups of 20 at 25 ± 1.0°C (mean ± SD). One of the five diets was fed on a DM basis to fish in three randomly selected aquaria twice daily to satiation (approximately 3% of wet body weight per day at the beginning and 2% of wet body weight per day at the end of the feeding trial) for 12 weeks. At the end of the 12‐week feeding trial, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) were determined; these were significantly lower in control fish than in fish fed supplemented diets (P < 0.05). The values for fish fed TA17 were significantly higher than for fish fed TA1, TA62 or TA119 (P < 0.05). There were no significant differences in WG, FE or PER among fish that were fed TA17 and TA32, among those that were fed TA32 and TA62, and among those that were fed TA62 and TA119 (P > 0.05). There were also no significant differences in SGR among fish fed TA32, TA62 or TA119 (P > 0.05). A broken‐line regression analysis on the basis of WG, SGR, FE and PER showed that dietary vitamin E requirements of juvenile eels were 21.2, 21.6, 21.2 and 21.5 (mg kg?1 diet), respectively. These results indicate that the dietary vitamin E requirement could be <21.2 mg kg?1 but <21.6 mg kg?1 diet in juvenile eel, A. japonica, when DL‐α‐tocopheryl acetate is used as the dietary vitamin E source.  相似文献   

2.
A 122‐day growth trial was conducted to observe the impact of polyhouse in winter on growth, conversion efficiencies and body composition of fingerling Labeo rohita (7.9 ± 1.1 cm; 4.60 ± 0.18 g). Fish were stocked (1.5 m?2) in polyhouse and outdoor concrete tanks (250 m2) in duplicate and fed a compound diet [35% crude protein (CP)] to apparent satiation twice daily, at 09.00 and 17.00 hours. A natural photoperiod was maintained during the trials. At the end of the trials, polyhouse‐reared fish produced significantly (P < 0.01) higher values for weight increment, specific growth rate (SGR %), protein efficiency rate (PER), protein productive value (PPV) and better feed conversion ratio (FCR). Polyhouse‐reared fish showed higher (P < 0.01) CP and fat, and lower (P < 0.01) moisture and ash contents in the muscle. In the second part of the study, which also lasted 122 days, polyhouse‐reared young L. rohita (21.7 ± 1.3 cm; 127.8 ± 0.69 g) were raised to marketable size in outdoor earthen ponds (500 m2) at a stocking density of 0.37 m?2 to examine the effects of feeding traditional feed mixture and compound diet (30% CP) on growth and body composition of fish. Labeo rohita fed the compound diet showed higher (P < 0.01) values for weight increment, SGR (%), PER and PPV, and better (P < 0.01) FCR than those fed traditional feed. Proximate composition of fish muscle showed higher (P < 0.05) CP and fat, and lower (P < 0.05) moisture and ash contents in fish fed the compound diet. The results suggest that polyhouse may be used successfully to culture L. rohita during winter, and that thereafter the fish may be reared in earthen ponds using the compound diet to obtain better production.  相似文献   

3.
This study was conducted to determine the dietary protein requirement for juvenile Chinese sucker, Myxocyprinus asiaticus. Six fishmeal‐based experimental diets containing various crude protein levels ranging from 300 to 500 g kg?1 were fed to triplicate groups of 20 fish each (initial weight 13.5 ± 1.1 g) for 56 days at a temperature of 28 ± 1°C (tank size 400 × 45 × 40 cm, linked to a recirculation system). Survival was not affected by dietary protein level (overall survival 71 to 90%). Weight gain (WG) and specific growth rate (SGR) increased with an increasing dietary protein level up to 460 g kg?1. The feed conversion rate (FCR) generally showed a decline at higher protein levels (from 1.62 in 300 g protein kg?1 to 1.13 in 500 g protein kg?1 feed). Protein efficiency ratio (PER) showed gradual improvements with increasing dietary protein up to 460 g kg?1. A similar trend was found for the protein productive value (PPV). Among the proximate compositions of the fish, crude protein content increased significantly with increasing dietary protein levels. Based on broken‐line regression analysis of SGR against dietary protein levels, the optimal dietary protein requirement for juvenile Chinese sucker was estimated to be close to 465 g kg?1.  相似文献   

4.
A 12‐week feeding trial was conducted to determine the optimum dietary protein requirement of brook trout, Salvelinus fontinalis, at 15 and 19°C. Twelve iso‐energetic (22 MJ · kg?1) and iso‐lipidic (23%) diets (36–58% protein at 2% increments) were prepared. Fish (29.45 ± 3.25 g · fish?1) were fed 2% of body weight per day, divided into two equal rations. The specific growth rate (SGR, % · day?1), feed efficiency ratio (FER), productive protein value (PPV), productive lipid value (PLV) and productive energy value (PEV), apparent digestibility of diet (ADDM) and protein (ADCP) were significantly higher at optimum temperature (15°C). Increasing PPV with increasing dietary carbohydrate and with decreasing dietary protein content was due to the protein‐sparing effect of carbohydrates. A piecewise regression (broken line) model between the SGR and digestible dietary protein level revealed that the digestible dietary protein requirement of brook trout was 44 and 40% at 15 and 19°C, respectively. When PPV (digestible protein retention basis) was modelled with a broken line, the digestible protein requirement of brook trout was 39 and 35% at 15 and 19°C, respectively. A reduction in dietary protein content balanced by increased gelatinised carbohydrate might be useful for improving the protein utilization efficiency for growth at 15 and 19°C; however, the growth and feed efficiency was lower at the elevated temperature.  相似文献   

5.
Atlantic salmon (Salmo salar) with an initial mass of 86 g were reared in 12 °C seawater for 8 weeks to a final average mass of 250 g. The fish were fed fish meal and fish oil-based diet supplemented with either 0%, 0.3% or 0.6% of tetradecylthioacetic acid (TTA), a 3-thia fatty acid. The specific growth rate (SGR) decreased with increasing dietary dose of TTA. The SGR of the group fed 0% of TTA (Control) was 1.8; that of the group fed 0.3% of TTA (TTA-L) was 1.7, and that of the group fed 0.6% of TTA (TTA-H) was 1.5. The mortality increased with increased dietary dose of TTA. The mitochondrial β-oxidation capacity in the liver of fish fed the TTA diets was 1.5 to 2 times higher than that of the Control fish. TTA supplementation caused substantial changes in the fatty acid compositions of the phospholipids (PL), triacylglycerols (TAG) and free fatty acids (FFA) of gills, heart and liver. The percentages of n−3 fatty acids, particularly 22:6 n−3, increased in fish fed diets containing TTA, while the percentage of the saturated FAs 14:0 and 16:0 in the PL fractions of the gills and heart decreased. The sum of monounsaturated FAs in the PL and TAG fractions from liver was significantly higher in fish fed diets containing TTA. TTA itself was primarily incorporated into PL. Two catabolic products of TTA (sulphoxides of TTA) were identified, and these products were particularly abundant in the kidney. TTA supplementation had no significant effect on the activity of the membrane-bound enzyme Na+,K+-ATPase.  相似文献   

6.
The fatty acid metabolism in fish is influenced by various factors, including fish species, water temperature, water environment and diet supply. The aim of present work is to investigate the fatty acid composition of yolk‐stage Siberian sturgeon larvae reared at three different temperatures. Fertilized Siberian sturgeon eggs were transferred to the Lodi Aquaculture Research Center of the University of Milan, divided in three aquaria, each containing three incubators and incubated at 16°C. After hatching the temperature was switched to 16, 19 and 22°C. Larvae sampling was performed at the end of yolk sac reabsorption. No feed was dispensed during the trial. Eggs and larvae were weighed and fatty acid profile was determined by GC‐FID analysis after lipid extraction by chloroform/methanol mixture and fatty acid transesterification by methanolic hydrogen chloride. The fertilized eggs had a weight of 23.27 mg and a lipid content of 2.67 mg/egg. At hatching, the weight was 12.2 (0.17 SD) mg and lipid content 1.9 (0.6 SD) mg/larva. At the end of the trial, larvae mean weight was 33.6 (3.6 SD), 34.7 (1.8 SD) and 36.9 (1.1 SD) mg, while lipid content was 2.0 (0.3 SD), 2.1 (0.3 SD) and 2.0 (0.2 SD) mg for larvae reared at 16, 19 and 22°C respectively, without statistically significant difference. Larvae subjected to the highest water temperature showed a faster yolk‐sac absorption. No differences were found across temperatures regarding survival rates and regarding ontogenic development. The fatty acid composition of larvae was affected by the temperature. Larvae reared at 16°C had the lowest amount of saturated fatty acids, mainly due to a lower palmitic acid content, that was offset by a higher level of linolenic and linoleic acid, if compared with larvae reared at 19°C and 22°C. The study suggests that at a lower temperature sturgeon spare unsaturated fatty acid consuming preferably saturated fatty acids, increasing our knowledge of the fatty acid metabolism in this species.  相似文献   

7.
饲料中不同维生素C含量对长吻鮠的影响   总被引:1,自引:0,他引:1  
用维生素C含量为38、364 和 630 mg /kg 的三种饲料饲喂初体重为23.19±0.58g的长吻鮠8个月,实验结果表明,38mg/kg Vc饲料组饲喂的长吻鮠表现出了典型的Vc缺乏症状:体色发黑,脊椎侧弯,鳍边由开始的萎缩直到腐烂;贫血;特定生长率显著降低(p<0.05)。并且38mg/kg Vc饲料组长吻鮠的生理指标也受到影响:血清溶菌酶活性显著下降(p<0.05);肝脏的SOD活性及MDA含量均显著升高(p<0.05);血清皮质醇没有显著差异(p>0.05);但各处理组长吻鮠肝脏中均未检测到诱导型HSP70的存在。因此,相对于皮质醇和HSP70,血清溶菌酶、肝脏SOD活性、肝脏MDA含量以及血液理化指标(血红细胞数及血红蛋白)更能反映出Vc缺乏下长吻鮠的生理状态。  相似文献   

8.
To quantify the optimum dietary arginine requirement of fingerling Indian major carp, Labeo rohita (4.10 ± 0.04 cm; 0.62 ± 0.02 g), an 8‐week growth trial was conducted in eighteen 70‐L indoor circular aqua‐coloured troughs provided with a flow‐through system at 28 ± 1°C. Isonitrogenous (40 g 100 g?1 crude protein) and isocaloric (4.28 kcal g?1 gross energy) amino acid test diets containing casein and gelatin as intact protein sources with graded levels of arginine (0.5, 0.75, 1.0, 1.25, 1.50 and 1.75 g 100 g?1 dry diet) were fed to triplicate groups of fish to apparent satiation at 07:00, 12:00 and 17:30 hours. Growth performance of fish fed the above diets was evaluated on the basis of absolute weight gain (AWG), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), protein retention efficiency (PRE) and energy retention efficiency (ERE). Maximum AWG (2.61), SGR (2.80), best FCR (1.35), highest PER (1.85), PRE (37%) and ERE (76%) were recorded at 1.25 g 100 g?1 dietary arginine. Maximum body protein (18.88 g 100 g?1) and RNA/DNA ratio (5.20) were also obtained in a 1.25 g 100 g?1 arginine dry diet. Except for the reduced growth performance in fish fed arginine‐deficient diets, no other deficiency signs were apparent. Based on the broken‐line and second‐degree polynomial regression analysis of the AWG, SGR, FCR, PER, PRE and ERE data, the optimum arginine requirement for fingerling Labeo rohita was found to be in the range of 1.22–1.39 g 100 g?1 of the dry diet, corresponding to 3.05–3.47 g 100 g?1 of dietary protein.  相似文献   

9.
The effects of three temperatures (15°C, 20°C and 25°C) and four feed types (artificial feed, AF; sediment, SM; fish faeces, FF; and fish meat, FM) on the growth, carbon budget and nitrogen budget of the polychaete Perinereis aibuhitensis were evaluated over a 35 day period. The final body weight and specific growth rate (SGR) of P. aibuhitensis were significantly affected by temperature and feed types (T, F?=?15.831, P?=?0.000; Feed, F?=?81.827, P?=?0.000), but the interaction between these factors was not significant (F?=?0.435, P?=?0.848). The worms achieved the highest SGR in the AF group at 20°C. However, the SGR in the SM group was only half that of the other groups. The food conversion efficiency (FCE) was significantly lower at 25°C than at 15°C and 20°C (P?P?=?0.000), with a mean of 39.83%. The apparent digestibility rate (ADR) at 25°C was significantly higher than at 15°C and 20°C (P?相似文献   

10.
Spray-dried milk enriched with n-3 fatty acids from linseed oil or fish oil were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2–4.5 fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas, 6-keto- prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase. (Mol Cell Biochem xxx: 9–16, 2005)  相似文献   

11.
A 10‐week feeding trial was conducted to determine the dietary protein requirement of juvenile triangular bream (Megalobrama terminalis). Five semi‐purified diets (white fishmeal as a protein source) were formulated with five crude protein (CP) levels (26.30%, 32.94%, 38.33%, 44.18% and 50.09%; diets P1–P5). Each diet was fed to triplicate groups (20 per fish replicate, initially weighing 1.30 ± 0.02 g). The following parameters were measured to evaluate the effects of different CP levels: weight gain (WG), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), daily feed intake (DFI), viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF), lipid retention (LR), liver glycogen content and plasma triglyceride level. The results of the feeding trial showed that WG, SGR and FE were significantly enhanced by an increasing dietary protein level of up to 44.18%, but there were no significant differences in protein levels from 44.18% to 50.09%. The PER and DFI showed a decreasing trend with increasing dietary CP levels. The VSI and HSI were not significantly affected by the different treatments, whereas the IPF increased significantly with decreasing CP levels. The highest LR value, liver glycogen value and triglyceride level in plasma were observed in fish fed the lowest CP diet (P1). Based on the WG and FE, this study suggests an optimum dietary protein level for M. terminalis of 44.18%.  相似文献   

12.
Selenium (Se) is a multifunctional trace element required in specific amounts for the optimal growth of aquatic finfish species. For this reason, this study investigated the effect of Se nanoparticles on the growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus). Striped catfish fed varying Se nanoparticles levels (0. 0.5, 1, and 2 mg/kg) in triplicate units and kept for 60 days. Striped catfish delivered dietary Se nanoparticles had markedly increased growth performance, specific growth rate (SGR), consumed feed, and protein efficiency ratio but reduced feed conversion ratio (FCR). The whole body, liver, muscle, and gills have higher Se accumulation levels in fish that received Se nanoparticles than the control with the highest level in fish fed 2 mg/kg. The carcass composition showed higher protein content in fish fed 1 and 2 mg/kg (p = 0.001 and 0.001) and higher ash content (p = 0.001 and 0.002) in fish fed 2 mg/kg than the remaining groups. Superoxide dismutase was meaningfully activated in Striped catfish delivered 1 and 2 mg Se nanoparticles/kg compared with the control (p < 0.05). Also, catalase and glutathione peroxidase activities were higher, and malondialdehyde level was lower in Striped catfish fed Se nanoparticles at 0.5, 1, and 2 mg/kg than the control (p < 0.05). The villi exhibited a visible increase in both height and branching with an increased level of Se nanoparticles in addition to the increased number of goblet cells. The Se nanoparticles-treated fish revealed dose-dependent modifications fluctuated from diffuse fatty vacuolization in hepatocytes with eccentric pyknotic hepatocytes nuclei. In conclusion, Se nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish. Based on SGR and FCR data's regression analysis, Se nanoparticles are recommended at 1.02–1.11 mg/kg diet.  相似文献   

13.
The present study was carried out to test different mussel meal (MM) dietary levels in combination with fishmeal (FM) on the growth performance, fatty acid composition and liver histology of common sole, Solea solea juveniles to highlight the growth potential of this species. Four isoproteic (53%) and isolipidic (11%) pelletized diets were formulated to contain graded levels of mussel meal, MM0 (0%), MM25 (25%), MM50 (50%) and MM75 (75%), up to 75%. Sole juveniles (initial individual mean body weight 13.1 ± 2.3 g, n = 840) were fed to satiation for 91 days. Seventy fish per tank (500‐L, 0.64 m2 bottom surface) were reared in 12 tanks (3 tanks per treatment) at 20 ± 1°C. Diets containing MM (MM25, MM50 and MM75) gave a significantly higher specific growth rate (SGR, 1.27 ± 0.01, 1.38 ± 0.06 and 1.40 ± 0.05, respectively), higher feed intake and lower feed conversion rate (FCR, 1.09 ± 0.01, 1.00 ± 0.04 and 0.98 ± 0.02, respectively) when compared to the FM‐based diet (MM0, SGR, 0.98 ± 0.11, FCR, 1.52 ± 0.13). Carcass proximate composition was not influenced by dietary treatments, with the exception of the significantly lower lipid content in the MM75 group. Protein efficiency ratio (PER) and gross protein efficiency (GPE) were significantly improved by the mussel meal inclusion (PER, 1.29 ± 0.12, 1.76 ± 0.01, 1.89 ± 0.06, 1.95 ± 0.08; GPE, 25.29 ± 1.85, 33.38 ± 0.89, 35.96 ± 1.36, 36.59 ± 1.05 in MM0, MM25, MM50 and MM75, respectively). A significant decrease in the viscerosomatic index was observed in fish fed with MM50 and MM75 in comparison to MM0. The hepatosomatic index of fish fed with MM0 and MM25 was higher than that of fish fed with MM75, although the histological examination of liver parenchyma in all experimental groups showed a uniformly abundant accumulation of lipid droplets. Carcass fatty acid composition was significantly affected by dietary treatments, reflecting the dietary fatty acid profile. According to these results, the inclusion of MM in experimental FM‐based diets improved the performance and feed utilization of common sole juveniles. The inclusion of MM in the present trial allowed a higher SGR than that registered in previous growth trials on common sole. This study could provide useful information to detect effective ingredients for practical diets in Solea solea. It also seems advisable to consider an inclusion of at least 25% MM in the experimental reference diet to be used for further application towards the development of specific diets for this species.  相似文献   

14.
The quality of canola oil is determined by its constituent fatty acids such as oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3). Most canola cultivars normally produce oil with about 55–65% oleic acid and 8–12% linolenic acid. High concentrations of linolenic acid lead to oil instability and off-type flavor, while high levels of oleic acid increase oxidative stability and nutritional value of oil. Therefore, development of canola cultivars with increased oleic acid and reduced linolenic acid is highly desirable for canola oil quality. In this study, we have mapped one locus that has a major effect and one locus that has a minor effect for high oleic acid and two loci that have major effects for low linolenic acid in a doubled haploid population. The major locus for high C18:1 was proven to be the fatty acid desaturase-2 (fad2) gene and it is located on the linkage group N5; the minor locus is located on N1. One major QTL for C18:3 is the fatty acid desaturase-3 gene of the genome C (fad3c) and it is located on N14. The second major QTL resides on N4 and is the fad3a gene of the A genome. We have sequenced genomic clones of the fad2 and fad3c genes amplified from an EMS-induced mutant and a wild-type canola cultivar. A comparison of the mutant and wild-type allele sequences of the fad2 and fad3c genes revealed single nucleotide mutations in each of the genes. Detailed sequence analyses suggested mechanisms by which both the mutations can cause altered fatty acid content. Based on the sequence differences between the mutant and wild-type alleles, two single nucleotide polymorphism (SNP) markers, corresponding to the fad2 and fad3c gene mutations, were developed. These markers will be highly useful for direct selection of desirable fad2 and fad3c alleles during marker-assisted trait introgression and breeding of canola with high oleic and low linolenic acid.  相似文献   

15.
Reducing the linolenic acid (18?:?3ω? 3,6,9) concentration of soybean [Glycine max (L.) Merr.] oil may lessen the need for chemical hydrogenation and enhance flavor stability. Soybean genotypes A5 and A23 have reduced linolenic acid concentration compared with current cultivars. Seed linolenic acid is synthesized primarily by the ω-3 fatty acid desaturase located in the microsomes. The objective of this research was to study whether this enzyme has a role in reducing the fatty acid levels in the soybean genotypes A5 and A23. DNA from A5 and A23 was analyzed by gel-blot hybridization with a cDNA encoding the ω-3 fatty acid desaturase. A5 and lines selected from it have a DNA fragment missing compared to A23 and lines with normal linolenic acid concentration. Seventy F4:5 lines from a population segregating for linolenic acid concentration were scored for presence or absence of the fragment. The absence of the fragment was significantly (P?0.0001) associated with a reduced linolenic acid level and accounted for 67% of the variation for linolenic acid in the population. These results suggest that the reduced linolenic acid concentration in A5 was at least partially the result of a full or partial deletion of a microsomal ω-3 desaturase gene. No DNA polymorphisms were found for the desaturase gene in A23, so no mutations could be studied in this line.  相似文献   

16.
Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2 to 4.5-fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas 6-keto-prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase.  相似文献   

17.
An 8‐week growth trial was carried out in a semi‐recirculation system at 26 ± 0.5°C to investigate the optimal dietary carbohydrate‐to‐lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Günther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate‐to‐lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADCd) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADCp) and apparent digestibility of energy (ACDe) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate‐to‐lipid ratio was 1.98 for Chinese longsnout catfish.  相似文献   

18.
《BBA》1987,890(2):215-223
Recent studies in our laboratory have reexamined the interaction of the unsaturated fatty acid, linolenic acid, with Photosystem II and have documented two principal regions of inhibition: one associated with the donor complex (Signal 2f or D1) to the reaction center, and the other located on the reducing side between pheophytin and Qa (Golbeck, J.H. and Warden, J.T. (1984) Biochim. Biophys. Acta 767, 263–271). A further characterization of fatty acid inhibition of secondary electron transport in Photosystem II at room and cryogenic temperatures is presented in this paper. These studies demonstrate that linolenic acid, and related fatty acid analogs, (1) eliminate the transient absorption increase at 320 nm, attributed to Qa; (2) abolish the production, either chemically or photochemically, of the ESR signal (QFe) associated with the bound quinone acceptor, Qa; and (3) prevent the photooxidation of Signal 21t(D1) at cryogenic temperature. Linolenic-acid-treated samples are characterized by a high initial fluorescence yield (Fi) equivalent to the maximum level of fluorescence (Fmax); however, the spin-polarized triplet, associated with the reactioncenter electron donor, P-680, is observed only in inhibited samples that have been prereduced with sodium dithionite. These results suggest the presence of an additional acceptor intermediate between pheophytin and Qa. The donor-assisted photoaccumulation of pheophytin anion in Photosystem II particles, as monitored by the decline of fluorescence yield, is inhibited by linolenic acid. Redox titrations of the fluorescence yield in control and inhibited preparations demonstrate that the midpoint potential for the primary acceptor for Photosystem II is insensitive to the fatty acid (Em ≈ −583 mV) and thus indicate that primary photochemistry is functional during linolenic-acid inhibition. These data are consistent with the hypothesis that unsaturated fatty acids inhibit secondary electron transport in Photosystem II via displacement of endogenous quinone from quinone-binding peptides.  相似文献   

19.
Irm  Misbah  Mu  Wei  Xiaoyi  Wu  Geng  Lina  Wang  Xiao  Ye  Bo  Ma  Lei  Zhou  Zhiyu 《Amino acids》2021,53(7):1065-1077

An 8-week feeding trial was conducted to evaluate optimum dietary methionine (Met) requirement of juvenile humpback grouper (Cromileptes altivelis) and the influence of dietary methionine (Met) supplementations on growth, gut micromorphology, protein and lipid metabolism. Seven isoproteic (48.91%) and isolipidic diets (10%) were made to contain 0.70, 0.88, 1.04, 1.27 1.46, 1.61 and 1.76% of dry matter Met levels. Results showed that lower survival, weight gain (WG%), protein efficiency ratio (PER), protein productive value (PPV) but higher daily feed intake (DFI) and feed conversion ratio (FCR) were observed in the Met deficient groups (0.70 and 0.88%). Optimum dietary Met requirement for humpback grouper was found to be 1.07% through the straight-broken line analysis of WG% against Met. Fish fed Met deficient diets (0.70, 0.88%) exhibited lower mRNA levels of growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor-I (IGF-1), target of rapamycin (TOR) as well as S6 kinase 1 (S6K1) than other dietary groups. Whereas, expression of genes related to general control nonderepressible (GCN2) kinase i.e., GCN2 and C/EBPβ enhancer-binding protein β was upregulated in fish fed low Met diets (P < 0.05). The mRNA expression of hepatic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1 (SREBP-1) were higher in fish fed 0.70 and 0.88% dietary Met group and the lipolytic genes, hepatic peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyl transferase-1 (CPT-1) showed an opposite variation tendency as FAS or SREBP1. Generally, the optimum Met requirement for humpback grouper was predicted to be 1.07% of dry matter.

  相似文献   

20.
A 12-week long feeding experiment was initiated to evaluate the effect of dietary supplementation of red algae, Gracilaria arcuata, on the growth performance, feed utilization and body composition of Nile tilapia Oreochromis niloticus (Linnaeus, 1758). The fish were fed with an algae-free control diet (C) and three experimental diets which replaced conventional fish meal with varying levels of dried G. arcuata (20%, 40% and 60%, represented as G20, G40 and G60, respectively). The growth parameters of final weight (FW), weight gain (WG), percentage of weight gain (WG%), daily growth rate (DGR) and specific growth rate (SGR) were significantly reduced (P < 0.05) at all levels of algae incorporation compared to the control diet. Moreover, the negative impact of Gracilaria meal on the growth performance of Nile tilapia increased as the proportion of algae in the diet increased, with fish on diet G20 exhibiting a significantly higher growth performance than the fish on either of the G40 and G60 diets. On the other hand, the feed utilization parameters feed conversion ratio (FCR) and protein efficiency ratio (PER) did not show significant differences between the fish in the control group and those on diet G20, although poorer FCR and PER outcomes were achieved in the case of fish on diet G60. The content of moisture, protein and ash in muscle and carcass increased as the proportion of Gracilaria meal in the diets increased, but the reverse was true for lipid level. These results indicate that incorporation of less than 20% red algae, Gracilaria arcuata, could be feasible in the diet of Nile tilapia and further studies are recommended to optimize the level of algae to improve growth performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号