首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some aspects of the paleoproductivity of meromictic Crawford Lake, near Toronto, are inferred from a study of its sedimentary pigments, and diatoms. Several stages of lake development are observed over the 35 cm-deep sediment core removed from the center of Crawford Lake. Evidence of changes in lake productivity during the last 300 years was reflected by significant stratigraphic sediment pigment changes which were associated with European settlement in the Crawford Lake watershed and recent alterations associated with the area's operation by the Conservation Authority (1969 — present). One of the most important factors correlated with paleoproductivity was land clearance (mainly logging of white oak and pine). Deforestation during the last century is correlated with an increase in the amount of algal pigments deposited in the lake's sediments during the 1800's. During the last 10 years a striking increase in the accumulation of chlorophyll derivatives was observed. This is correlated with a dramatic increase in the number of visitors to the lake.Stratigraphic changes in the ratio of cyanobacterial to phototrophic bacterial pigment accumulation are used to infer changes which occurred during the shift from mesotrophy to eutrophy in Crawford Lake.  相似文献   

2.
We investigated the distribution of chloropigments in a small meromictic lake, Lake Kaiike, south-west Japan. In the water-column, concentrations of Chl a related to cyanobacteria, BChl a related to purple sulphur bacteria, and three types of BChl e homologues (BChls e1, e2 and e3) related to brown-coloured green sulphur bacteria, were maximal at the redox boundary. Below the redox boundary, absolute concentrations of Chl a and BChl a gradually decreased with depth, whereas BChls e remained rather constant. Suspended particulate matter (SPM) at the deeper region of the anoxic water-column was enriched in highly alkylated BChl e homologues compared with SPM at the redox boundary. The shift in the relative content of highly alkylated BChl e homologues beneath the boundary was associated with community related adaptation of brown-coloured green sulphur bacteria to changes in light quality/quantity, resulting from the optical absorption and reflectance of SPMs in the overlying water-column. Benthic microbial mats were characterized by high abundances of BChls e, in which highly alkylated homologues were substantially abundant. This suggests that the BChls e in the microbial mat may be derived from the low-light adapted brown-coloured green sulphur bacteria forming the bacterial mat.  相似文献   

3.
M. D. Burch 《Hydrobiologia》1988,165(1):59-75
The annual cycle of phytoplankton in saline, meromictic Ace Lake (68°2S.4S, 78°11.1E) in the Vestfold Hills, Antarctica, was studied from January, 1979 to January 1980. Ace Lake has permanent gradients of temperature, salinity, dissolved oxygen, and hydrogen sulphide, and is ice covered with up to 2 m of ice for 10–12 months each year. The phytoplankton community had low diversity, consisting of only four species, all flagellates — a prasinophyte Pyramimonas gelidicola McFadden et al., a cryptophyte of the genus Cryptomonas; an unidentified colourless microflagellate, and an unarmoured dinoflagellate. These were restricted to the oxic zone of the lake from the surface to 10 m.The phytoplankton had a cycle of seven months of active growth over spring and summer. Low numbers of cells survived in the water column over winter. Spring growth was initiated below the ice by increased light penetration through the ice into the lake, enhanced at the time by the removal of surface snow which accumulated on the ice over winter. Peak phytoplankton biomass production was by the shade adapted P. gelidicola and occurred at the interface of the oxic and anoxic zones where substantial available nitrogen as ammonia is found.The three dominant phytoplankton species displayed distinct vertical stratification over the oxic zone. This stratification was not static and developed over spring as the flagellates migrated to preferred light climate zones. Mean cell volume of two of the flagellates varied significantly over the year. Minimum volumes were recorded in winter and volume increased progressively over spring to reach maximum mean cell volume in summer. Mean cell volume was positively correlated with light intensity (maximum ambient PAR at the respective depth for date of sample). Low cell volume in winter may be related to winter utilization of carbohydrate reserves by slow respiration, and may represent a survival mechanism.  相似文献   

4.
The recent history of Little Round Lake, a small meromictic lake in southeastern Ontario, is considered. Pollen analyses were used to identify past changes in terrestrial vegetation, whilst limnological conditions were interpreted on the basis of diatom and chrysophyte microfossils. Contemporaneous with the arrival of European settlers (ca. A. D. 1850), the predisturbance assemblage of oligotrophic Cyclotella diatoms was replaced by Synedra spp., which then succeeded to a eutrophic flora dominated by Stephanodiscus hantzschii. Meanwhile, synuracean algae were almost completely excluded. Over the last 30 years, the algal microfossils indicate that the lake underwent a marked return to oligotrophy. Evidence is presented which suggests that this shift was related to the cultural enhancement of meromixis by the seepage of road salt.  相似文献   

5.
6.
The study deals with phytoplankton biodiversity in mesotrophic Sartlan Lake, a large natural saline water body in the south of West Siberia. Two different approaches are used: floristic and ecological cenotic. The former is good for determining and analyzing the phytoplankton species composition. The latter gives a quantitative estimation of the phytoplankton biodiversity from the equation of information theory: $ H_b = - \sum\limits_{i = 1}^n {\frac{{B_i }} {B}\log _2 \frac{{B_i }} {B}} The study deals with phytoplankton biodiversity in mesotrophic Sartlan Lake, a large natural saline water body in the south of West Siberia. Two different approaches are used: floristic and ecological cenotic. The former is good for determining and analyzing the phytoplankton species composition. The latter gives a quantitative estimation of the phytoplankton biodiversity from the equation of information theory: , where H b is the biodiversity (bits); B i is the population biomass of the species i; B is the entire phytoplankton community biomass (mg/l). A reliable stable negative correlation exists between the phytoplankton biomass and species diversity. Analytical equations and a diagram are given to illustrate the correlation between these values. Original Russian Text ? V.I. Ermolaev, 2009, published in Sibirskii Ekologicheskii Zhurnal, 2009, Vol. 16, No. 4, pp. 623–628.  相似文献   

7.
Cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii are two harmful species which co-occur and successively dominate in freshwaters globally. Within-species strain variability affects cyanobacterial population responses to environmental conditions, and it is unclear which species/strain would dominate under different environmental conditions. This study applied a Monte Carlo approach to a phytoplankton dynamic growth model to identify how growth variability of multiple strains of these two species affects their competition.Pairwise competition between four M. aeruginosa and eight C. raciborskii strains was simulated using a deterministic model, parameterized with laboratory measurements of growth and light attenuation for all strains, and run at two temperatures and light intensities. 17 000 runs were simulated for each pair using a statistical distribution with Monte Carlo approach.The model results showed that cyanobacterial competition was highly variable, depending on strains present, light and temperature conditions. There was no absolute ‘winner’ under all conditions as there were always strains predicted to coexist with the dominant strains, which were M. aeruginosa strains at 20 °C and C. raciborskii strains at 28 °C. The uncertainty in prediction of species competition outcomes was due to the substantial variability of growth responses within and between strains. Overall, this study demonstrates that within-species strain variability has a potentially large effect on cyanobacterial population dynamics, and therefore this variability may substantially reduce confidence in predicting outcomes of phytoplankton competition in deterministic models, that are based on only one set of parameters for each species or strain.  相似文献   

8.
Abstract Cyanobacterial mats developed on fine sandy sediments of the upper littoral of the island of Mellum (North Sea). Freshly colonized sediment was dominated by the non-heterocystous, nitrogen-fixing cyanobacterium Oscillatoria limosa . Well established mats in which the cosmopolitan cyanobacterium Microcoleus chthonoplastes was the dominant organism also usually contained O. limosa as a minor component. This mat was about 1 mm thick and contained high biomass. Photosynthesis was maximal at about 150 μm depth and reached values of 280 μmol oxygen. 1−1 · min−1. On the other hand, in the dark, high respiratory activity turned the mat anaerobic within minutes. Freshly colonized sediment consisted of low cyanobacterial biomass loosely attached to the sand grains and present up to a depth of 2.5 mm. Respiratory activity was low and the sediment remained aerobic to a depth of 2 mm throughout the night. Nitrogen fixation (acetylene reduction) was measured during 24-h periods in both types of mats in order to elucidate interactions with oxygenic photosynthesis and oxygen concentration. Acetylene reduction in the mats showed very different diurnal patterns which depended on the type of mat investigated and the time of year. The results indicated that a temporary separation of oxygenic photosynthesis and nitrogen fixation occurred in the mat. Established mats fixed nitrogen predominantly during the transition from dark to light and vice versa, when oxygenic photosynthesis was reduced or absent. Freshly colonized sediment-fixed nitrogen throughout the night but often a stimulation was seen at dawn. The latter showed much higher specific activities than the established type. Also in spring, specific activities were much higher.  相似文献   

9.
To determine if different algal viruses ( Phycodnaviridae ) share common patterns of seasonal abundance, quantitative PCR methods were developed and applied to monitor the abundances of three different viruses in Lake Ontario, Canada over 13 months. Throughout the year, the abundances of two different phycodnavirus polB gene fragments (LO1b-49 and LO1a-68) varied by more than two orders of magnitude, peaked during the autumn months, and were lowest during the summer. The seasonal abundance patterns of these two virus genes were similar and both were detected in almost every sample, but LO1b-49 was consistently an order of magnitude more abundant than LO1a-68. LO1b-49 reached a maximum abundance of 5413 ± 312 genes ml−1, whereas LO1a-68's abundance peaked at only 881 ± 113 genes ml−1. Another phycodnavirus polB fragment that was monitored (LO1b-16) was detected in only a few samples, but reached a higher maximum concentration (6771 ± 879 genes ml−1) than either LO1b-49 or LO1a-68. The results of this year-long investigation of virus gene abundances suggests that Lake Ontario's phycodnavirus community is composed of persistent viruses detectable throughout the year and transient viruses present in only a few sporadic samples. The results also suggest that some persistent algal viruses are able to survive at relatively low abundances through several seasons.  相似文献   

10.
Interactions between phytoplankton and zooplankton in a fertilized lake   总被引:3,自引:0,他引:3  
The limnology of an oligotrophic lake, Langvatn, situated in Trøndelag county in Central Norway, has been studied for five years (1974–1978). In two years, 1975 and 1976, the lake was fertilized with a general fertilizer to change feeding conditions for the zooplankton. Mean phytoplankton biomass in the epilimnion and primary production for the years (1974–1978) were 417, 618, 1370, 607 and 779 mg m−3 and 10.6, 22.2, 49.0, 26.8 and 17.7 g C m−2 yr−1, respectively. Cladocerans were the dominant herbivore group in 1974 and 1975 and Rotifera in the next three years. The main difference in the interaction between phytoplankton and zooplankton occurred when cladoceran dominance gave way to rotifer dominance. Heavy phytoplankton grazing by cladocerans in 1974 and 1975 stabilized the biomass and maintained it at a low level, which also resulted in a relatively low primary production. The rotifer-dominated community during the years 1976–1978 did not possess the ability to maintain a stable level of algal biomass. Primary production was also relatively high during these years.  相似文献   

11.
The development of ciliated protozoan biomass in the hypolimnion of Piburger See, a small subalpine lake, was demonstrated to depend mainly on two factors. Firstly, the availability of oxygen or nitrate as electron acceptors determines the depth profiles of ciliates. Large quantities of ciliates and even maximum numbers were found at depths where no oxygen could be detected. If nitrate also disappeared during the summer stagnation period, the biomass of protozoa was strongly reduced. Nitrite peaks generally corresponded with ciliate peaks. An extension of Finlay's findings (dissimilatory nitrate reductase within the inner mitochondrial membrane) to other ciliate groups is hypothesized.Secondly, the biomass development of hypolimnetic ciliates was strongly correlated with the bacterial biomass registered approx. 2 weeks before (r2 = 0.891, n = 14). The biomass of bacteria, on the other hand, was dependent upon the sedimentation rate of organic carbon (r2 = 0.850, n = 15), if a time lag of approx. 2 weeks was taken into account. Therefore a total time lag of approx. 4 weeks was assumed to take place between sedimentation of organic substance and the corresponding increase in ciliate biomass (r2 = 0.853, n = 14). Bacteria were shown to be an important intermediate link in the food chain of the hypolimnion. They appear to represent the principal energy source for pelagic ciliates. Sedimentation of organic carbon, nitrogen and phosphorus is the driving force for the establishment of the hypolimnetic microbial community.  相似文献   

12.
Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1–1) was often similar to phytoplankton carbon (44–300 µgC 1–1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1–1, bacteriochlorophyll a 1500–70001µ 1–1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m–2 d–1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1–1 h–1) than for glucose (0.3–1.4 µgC 1–1 h–1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.  相似文献   

13.
The energy contents (standing stock) of the floating mat formed by the green alga Cladophora sivaschensis and the energy transfers through it were quantified for a shallow hypersaline lake (at Cape Khersones, Crimea, Ukraine) during the spring months. Appropriate direct calorimetric techniques were applied to: (i) measure the heat energy dissipated by the mat community and by the free bacterioplankton in the water column below it; and (ii) differentiate between the heat flows by the heterotrophic and the phototrophic components of the community. It was shown that Cladophora biomass reached a peak of 579.5 g C m–2, contributing more than 99.6% of the total mat community. Throughout the spring, the total bacterial energy transfer (6 to 23 mW m–2) was as little as 1.1 to 2.6% of the total heat dissipated by the microplankton community. The rest of the estimated heat energy (584 to 1488 mW m–2) was associated with Cladophora metabolism. In the spring community: (i) the rate of biomass accumulation in the lake photic layer significantly exceeded its heterotrophic mineralisation; (ii) the efficiency of the microbial loop was too low to process even a minor part of the accumulated organic matter. The microcalorimetric technique was shown to be a highly promising approach for further studies of natural microbial mats and biofilms, biological systems with complex metabolism that involves not only aerobic processes but also anaerobic catabolism under local hypoxic/microxic conditions.  相似文献   

14.
The fine-scale depth distribution of major carbon pools and their stable carbon isotopic signatures (delta(13)C) were determined in a cyanobacterial mat (Salin-de-Giraud, Camargue, France) to study early diagenetic alterations and the carbon preservation potential in hypersaline mat ecosystems. Particular emphasis was placed on the geochemical role of extracellular polymeric substances (EPS). Total carbon (C(tot)), organic carbon (C(org)), total nitrogen (N(tot)), total hydrolysable amino acids (THAA), carbohydrates, cyanobacteria-derived hydrocarbons (8-methylhexadecane, n-heptadec-5-ene, n-heptadecane) and EPS showed highest concentrations in the top millimetre of the mat and decreased with depth. The hydrocarbons attributed to cyanobacteria showed the strongest decrease in concentration with depth. This correlated well with the depth profiles of oxygenic photosynthesis and oxygen, which were detected in the top 0.6 and 1.05 mm, respectively, at a high down-welling irradiance (1441 micromol photons m(-2) s(-1)). At depths beneath the surface layer, the C(org) was composed mainly of amino acids and carbohydrates. A resistance towards microbial degradation could have resulted from interactions with diverse functional groups present in biopolymers (EPS) and with minerals deposited in the mat. A (13)C enrichment with depth for the total carbon pool (C(tot)) was observed, with delta(13)C values ranging from -16.3 per thousand at the surface to -11.3 per thousand at 9-10 mm depth. Total lipids depicted a delta(13)C value of -17.2 per thousand in the top millimetre and then became depleted in (13)C with depth (-21.7 to -23.3 per thousand). The delta(13)C value of EPS varied only slightly with depth (-16.1 to -17.3 per thousand) and closely followed the delta(13)C value of C(org) at depths beneath 4 mm. The EPS represents an organic carbon pool of preservation potential during early stages of diagenesis in recent cyanobacterial mats as a result of a variety of possible interactions. Their analyses might improve our understanding of fossilized microbial remains from mat ecosystems.  相似文献   

15.
16.
Microbial methanogenesis and acetate metabolism in a meromictic lake.   总被引:9,自引:0,他引:9  
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 mumol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of (14)CH(4) from (14)C-labeled HCOOH, HCO(3) (-), and CH(3)OH and [2-(14)C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H(14)CO(3) (-) by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH(4) and CO(2) in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 mug/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO(2) production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 mug/liter) completely inhibited methanogenesis and stimulated CO(2) formation.  相似文献   

17.
An integrative study of a meromictic lake ecosystem in Antarctica   总被引:1,自引:0,他引:1  
In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems.  相似文献   

18.
19.
C. W. Heath 《Hydrobiologia》1988,165(1):77-87
Primary production in Watts Lake, Vestfold Hills, Antarctica (68°36S, 78°13E), was measured from March 1981 to February 1982. Phytoplankton production peaked in autumn and spring, with a September maximum (340 mgC m–2 d–1), then declined in summer and was not detectable in winter. Benthic algal production peaked in summer at 74 mgC m–2 d–1), Production strategies differed, with the more efficient phytoplankton adapted to growth at low light, while benthic production increased with increasing light in summer. Estimation of annual production was 10.1 gC m–2 and 5.5 gC m–2 for the phytoplankton and benthos respectively.  相似文献   

20.
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号