首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three types of hemoglobins exist in higher plants, symbiotic, non-symbiotic, and truncated hemoglobins. Symbiotic (class II) hemoglobins play a role in oxygen supply to intracellular nitrogen-fixing symbionts in legume root nodules, and in one case ( Parasponia Sp.), a non-symbiotic (class I) hemoglobin has been recruited for this function. Here we report the induction of a host gene, dgtrHB1, encoding a truncated hemoglobin in Frankia-induced nodules of the actinorhizal plant Datisca glomerata. Induction takes place specifically in cells infected by the microsymbiont, prior to the onset of bacterial nitrogen fixation. A bacterial gene (Frankia trHBO) encoding a truncated hemoglobin with O (2)-binding kinetics suitable for the facilitation of O (2) diffusion ( ) is also expressed in symbiosis. Nodule oximetry confirms the presence of a molecule that binds oxygen reversibly in D. glomerata nodules, but indicates a low overall hemoglobin concentration suggesting a local function. Frankia trHbO is likely to be responsible for this activity. The function of the D. glomerata truncated hemoglobin is unknown; a possible role in nitric oxide detoxification is suggested.  相似文献   

2.
The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.  相似文献   

3.
植物血红蛋白(Hemoglobin)是一类由珠蛋白(Globin)和血红素(Ferroheme)组成的结合蛋白,在植物中广泛分布,迄今已在苔藓植物、裸子植物和被子植物中克隆到血红蛋白基因序列,但在蕨类植物中相关研究还未见报道。该研究采用热不对称交错PCR(TAIL-PCR)方法克隆了水蕨血红蛋白基因的全长序列。该基因的序列总长为949 bp,包含4个外显子和3个内含子,编码189个氨基酸。预测的蛋白质(命名为CtHb)的分子量为21.14 kDa,等电点(pI)为7.81。三维结构模拟表明CtHb具有植物血红蛋白典型的三级结构:即含有A、B、C、E、F、G和H螺旋,形成了3-on-3的"三明治"结构。和水稻血红蛋白的三级结构相比,CtHb的大部分结构(包括具有远端和近端组氨酸定位的E螺旋和F螺旋的位置等)同水稻的结构极为相似。两者的不同之处主要表现在:(1)CtHb含有较长的N-端区域;(2)两者CD-loop的折叠方式不同;(3)两者螺旋B和螺旋C的连接方式不同,CtHb是通过卷曲连接的,而水稻中借助的是螺旋。结构进化分析揭示了植物血红蛋白从非共生到共生进化过程中的一些关键改变,这些改变可能有助于非共生血红蛋白向共生血红蛋白结构的转变,特别是有助于豆血红蛋白共生功能的实现。  相似文献   

4.
Plant haemoglobins (Hbs), found in both symbiotic and non-symbiotic plants, are heme proteins and members of the globin superfamily. Hb genes of actinorhizal Fagales mostly belong to the non-symbiotic type of haemoglobin; however, along with the non-symbiotic Hb, Casuarina sp. posses a symbiotic one (symCgHb), which is expressed specifically in infected cells of nodules. A thorough sequence analysis of 26 plant Hb proteins, currently available in public domain, revealed a consensus motif of 29 amino acids. This motif is present in all the members of symbiotic class II Hbs including symCgHb and non-symbiotic Class II Hbs, but is totally absent in Class I symbiotic and non-symbiotic Hbs. Further, we constructed 3D structures of Hb proteins from Alnus and Casuarina through homology modelling and peeped into their structural properties. Structure-based studies revealed that the Casuarina symbiotic haemoglobin protein shows distinct stereochemical properties from that of the other Casuarina and Alnus Hb proteins. It also showed considerable structural similarities with leghemoglobin structure from yellow lupin (pdb id 1GDI). Therefore, sequence and structure analyses point to the fact that symCgHb protein shows significant resemblance to symbiotic haemoglobin found in legumes and may thus eventually play a similar role in shielding the nitrogenase from oxygen as seen in the case of leghemoglobin.  相似文献   

5.
The x-ray crystal structure of Synechocystis hemoglobin has been solved to a resolution of 1.8 A. The conformation of this structure is surprisingly different from that of the previously reported solution structure, probably due in part to a covalent linkage between the heme 2-vinyl and His117 that is present in the crystal structure but not in the structure solved by NMR. Synechocystis hemoglobin is a hexacoordinate hemoglobin in which the heme iron is coordinated by both the proximal and distal histidines. It is also a member of the "truncated hemoglobin" family that is much shorter in primary structure than vertebrate and plant hemoglobins. In contrast to other truncated hemoglobins, the crystal structure of Synechocystis hemoglobin displays no "ligand tunnel" and shows that several important amino acid side chains extrude into the solvent instead of residing inside the heme pocket. The stereochemistry of hexacoordination is compared with other hexacoordinate hemoglobins and cytochromes in an effort to illuminate factors contributing to ligand affinity in hexacoordinate hemoglobins.  相似文献   

6.
Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses.  相似文献   

7.
The recent review summarizes the major achievements in discovery of role of phytoglobins in mediation of nitric oxide generated cellular functions in higher plants. Genes encoding non-symbiotic hemoglobins have been cloned from several plant species. The expression pattern of these genes show tissue-specificity that is also under the control of stress factors like hypoxia. The nitric oxide has pivotal role in signalling pathway specifically in hypersensitive reactions and programmed cell death. Production of transgenic tobacco plants overexpressing the alfalfa hemoglobin showed altered necrotic symptoms after treatment with nitric oxide generating compounds or infection by necrotic pathogens. The present review helps to outline the similar relation between hemoglobin and nitric oxide in plants as it was found in animal cells.  相似文献   

8.
植物的血红蛋白   总被引:5,自引:0,他引:5  
近几年来,植物血红蛋白的研究进展十分迅速,豆科植物中与共生固氮无关的血红蛋白基因和包括禾本科植物在内的许多非豆科植物血红蛋白基因的发现使人们对植物血红蛋白有了新的认识,进而把植物血红蛋白分为共生血红蛋白和非共生血红蛋白两种类型。对这两种血红蛋白的性质、功能、基因结构及表达等方面的研究不仅对共生固氮中植物与微生物的相互关系和固氮工程研究;而且对植物细胞的呼吸代谢和耐涝机理等研究有重要价值。  相似文献   

9.
Hexacoordinate hemoglobins are found in many living organisms ranging from prokaryotes to plants and animals. They are named "hexacoordinate" because of reversible coordination of the heme iron by a histidine side chain located in the heme pocket. This endogenous coordination competes with exogenous ligand binding and causes multiphasic relaxation time courses following rapid mixing or flash photolysis experiments. Previous rapid mixing studies have assumed a steady-state relationship between hexacoordination and exogenous ligand binding that does not correlate with observed time courses for binding. Here, we demonstrate that this assumption is not valid for some hexacoordinate hemoglobins, and that multiphasic time courses are due to an appreciable fraction of pentacoordinate heme resulting from relatively small equilibrium constants for hexacoordination (K(H)). CO binding reactions initiated by rapid mixing are measured for four plant hexacoordinate hemoglobins, human neuroglobin and cytoglobin, and Synechocystis hemoglobin. The plant proteins, while showing a surprising degree of variability, differ from the others in having much lower values of K(H). Neuroglobin and cytoglobin display dramatic biphasic time courses for CO binding that have not been observed using other techniques. Finally, an independent spectroscopic quantification of K(H) is presented that complements rapid mixing for the investigation of hexacoordination. These results demonstrate that hexacoordination could play a much larger role in regulating affinity constants for ligand binding in human neuroglobin and cytoglobin than in the plant hexacoordinate hemoglobins.  相似文献   

10.
11.
Expression and evolution of functionally distinct haemoglobin genes in plants   总被引:10,自引:0,他引:10  
Hunt  P.W.  Watts  R.A.  Trevaskis  B.  Llewelyn  D.J.  Burnell  J.  Dennis  E.S.  Peacock  W.J. 《Plant molecular biology》2001,47(5):677-692
Haemoglobin genes have been found in a number of plant species, but the number of genes known has been too small to allow effective evolutionary inferences. We present nine new non-symbiotic haemoglobin sequences from a range of plants, including class 1 haemoglobins from cotton, Citrus and tomato, class 2 haemoglobins from cotton, tomato, sugar beet and canola and two haemoglobins from the non-vascular plants, Marchantia polymorpha (a liverwort) and Physcomitrella patens (a moss). Our molecular phylogenetic analysis of all currently known non-symbiotic haemoglobin genes and a selection of symbiotic haemoglobins have confirmed the existence of two distinct classes of haemoglobin genes in the dicots. It is likely that all dicots have both class 1 and class 2 non-symbiotic haemoglobin genes whereas in monocots we have detected only class 1 genes. The symbiotic haemoglobins from legumes and Casuarina are related to the class 2 non-symbiotic haemoglobins, whilst the symbiotic haemoglobin from Parasponia groups with the class 1 non-symbiotic genes. Probably, there have been two independent recruitments of symbiotic haemoglobins. Although the functions of the two non-symbiotic haemoglobins remain unknown, their patterns of expression within plants suggest different functions. We examined the expression in transgenic plants of the two non-symbiotic haemoglobins from Arabidopsis using promoter fusions to a GUS reporter gene. The Arabidopsis GLB1 and GLB2 genes are likely to be functionally distinct. The class 2 haemoglobin gene (GLB2) is expressed in the roots, leaves and inflorescence and can be induced in young plants by cytokinin treatment in contrast to the class 1 gene (GLB1) which is active in germinating seedlings and can be induced by hypoxia and increased sucrose supply, but not by cytokinin treatment.  相似文献   

12.
Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.  相似文献   

13.
A ubiquitously expressed human hexacoordinate hemoglobin   总被引:13,自引:0,他引:13  
We have identified a new human hemoglobin that we call histoglobin because it is expressed in a wide array of tissues. Histoglobin shares less than 30% identity with the other human hemoglobins, and the gene contains an intron in an unprecedented location. Spectroscopic and kinetic experiments with recombinant human histoglobin indicate that it is a hexacoordinate hemoglobin with significantly different ligand binding characteristics than the other human hexacoordinate hemoglobin, neuroglobin. In contrast to the very high oxygen affinities displayed by most hexacoordinate hemoglobins, the biophysical characteristics of histoglobin indicate that it could facilitate oxygen transport. The discovery of histoglobin demonstrates that humans, like plants, differentially express multiple hexacoordinate hemoglobins.  相似文献   

14.
Park HJ  Yang C  Treff N  Satterlee JD  Kang C 《Proteins》2002,49(1):49-60
Erythrocytes of the marine annelid, Glycera dibranchiata, contain a mixture of monomeric and polymeric hemoglobins. There are three major monomer hemoglobin components, II, III, IV (also called GMH2, 3, and 4), that have been highly purified and well characterized. We have now crystallized GMH3 and GMH4 and determined their structures to 1.4-1.8 A resolution. The structures were determined for these two monomer hemoglobins in the oxidized (Fe3+, ferric, or met-) forms in both the unligated and cyanide-ligated states. This work differs from two published, refined structures of a Glycera dibranchiata monomer hemoglobin, which has a sequence that is substantially different from any bona fide major monomer hemoglobins (GMH2, 3, or 4). The high-resolution crystal structures (presented here) and the previous NMR structure of CO-ligated GMH4, provide a basis for interpreting structure/function details of the monomer hemoglobins. These details include: (1) the strong correlation between temperature factor and NMR dynamics for respective protein forms; (2) the unique nature of the HisE7Leu primary sequence substitutions in GMH3 and GMH4 and their impact on cyanide ion binding kinetics; (3) the LeuB10Phe difference between GMH3 and GMH4 and its impact on ligand binding; and (4) elucidation of changes in the structural details of the distal and proximal heme pockets upon cyanide binding.  相似文献   

15.
Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremulaxtremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin.  相似文献   

16.
Hemoglobins from the plants Parasponia andersonii (ParaHb) and Trema tomentosa (TremaHb) are 93% identical in primary structure but differ in oxygen binding constants in accordance with their distinct physiological functions. Additionally, these proteins are dimeric, and ParaHb exhibits the unusual property of having different heme redox potentials for each subunit. To investigate how these hemoglobins could differ in function despite their shared sequence identity and to determine the cause of subunit heterogeneity in ParaHb, we have measured their crystal structures in the ferric oxidation state. Furthermore, we have made a monomeric ParaHb mutant protein (I43N) and measured its ferrous/ferric heme redox potential to test the hypothesized link between quaternary structure and heme heterogeneity in wild-type ParaHb. Our results demonstrate that TremaHb is a symmetric dimeric hemoglobin similar to other class 1 nonsymbiotic plant hemoglobins but that ParaHb has structurally distinct heme coordination in each of its two subunits that is absent in the monomeric I43N mutant protein. A mechanism for achieving structural heterogeneity in ParaHb in which the Ile(101(F4)) side chain contacts the proximal His(105(F8)) in one subunit but not the other is proposed. These results are discussed in the context of the evolution of plant oxygen transport hemoglobins, and other potential functions of plant hemoglobins.  相似文献   

17.
18.
All plants contain an unusual class of hemoglobins that display bis-histidyl coordination yet are able to bind exogenous ligands such as oxygen. Structurally homologous hexacoordinate hemoglobins (hxHbs) are also found in animals (neuroglobin and cytoglobin) and some cyanobacteria, where they are thought to play a role in free radical scavenging or ligand sensing. The plant hxHbs can be distinguished from the others because they are only weakly hexcacoordinate in the ferrous state, yet no structural mechanism for regulating hexacoordination has been articulated to account for this behavior. Plant hxHbs contain a conserved Phe at position B10 (Phe(B10)), which is near the reversibly coordinated distal His(E7). We have investigated the effects of Phe(B10) mutation on kinetic and equilibrium constants for hexacoordination and exogenous ligand binding in the ferrous and ferric oxidation states. Kinetic and equilibrium constants for hexacoordination and ligand binding along with CO-FTIR spectroscopy, midpoint reduction potentials, and the crystal structures of two key mutant proteins (F40W and F40L) reveal that Phe(B10) is an important regulatory element in hexacoordination. We show that Phe at this position is the only amino acid that facilitates stable oxygen binding to the ferrous Hb and the only one that promotes ligand binding in the ferric oxidation states. This work presents a structural mechanism for regulating reversible intramolecular coordination in plant hxHbs.  相似文献   

19.
Plant fitness is enhanced by resource allocation to seed number (offspring number) or weight (offspring survival). Besides, there is a well known trade-off in resource allocation between both traits. Symbiotic interactions can influence plant resource allocation to reproduction, yet little research has been performed in this direction. We studied the consequences of a grass–fungus symbiosis on the trade-off between seed number and weight, using Lolium multiflorum and the endophyte Neotyphodium occultans as our study system. In ecological terms, we experimentally removed N. occultans from L. multiflorum plants, and compared reproductive allocation to seed number and weight in endophyte-symbiotic vs. non-symbiotic plants at different levels of nutrient availability (small pots vs. large pots). In evolutionary terms, we compared reproductive allocation between symbiotic vs. non-symbiotic plants for different host genotypes. All plants showed a negative association between seed number and weight, once standardized for total reproductive biomass. Under high nutrient availability, endophyte-symbiotic plants showed higher seed weight than non-symbiotic plants for any seed number. However, no differences were observed under low nutrient availability. Endophyte influence also varied according to L. multiflorum genotype; specifically, endophyte-symbiotic plants showed a lower slope in the relationship between seed number and weight than non-symbiotic plants for the ‘Marshall’ genotype but no endophyte influence was found for the “Pampean” genotype. The results implied a higher plasticity in seed weight and lower plasticity in seed number for symbiotic plants. Indeed, endophyte-symbiotic plants showed an overall lower slope in the association between seed number and total reproductive biomass than non-symbiotic plants. Our results suggest that N. occultans induces heavier seeds in L. multiflorum plants under environmental conditions favorable to plant growth or for certain plant genotypes. We propose that symbiotic interactions may influence the evolution of seed number and weight trade-off.  相似文献   

20.
Genome of the model dicot flowering plant, Arabidopsis thaliana, a popular tool for understanding molecular biology of plant physiology, encodes all three classes of plant hemoglobins that differ in their sequence, ligand binding and spectral properties. As such these globins are of considerable attention. Crystal structures of few members of plant class I nonsymbiotic hemoglobin have been described earlier. Here we report the crystal structure of Arabidopsis class I hemoglobin (AHb1) to 2.2 ? and compare its key features with the structures of similar nonsymbiotic hemoglobin from other species. Crystal structure of AHb1 is homologous to the related members with similar globin fold and heme pocket architecture. The structure is homodimeric in the asymmetric unit with both distal and proximal histidines coordinating to the heme iron atom. Residues lining the dimeric interface are also conserved in AHb1 with the exception of additional electrostatic interaction between H112 and E113 of each subunit and that involving Y119 through two water molecules. In addition, differences in heme pocket non-covalent interactions, a novel Ser residue at F7 position, Xe binding site variability, internal cavity topology differences, CD loop conformation and stability and other such properties might explain kinetic variability in AHb1. Detailed cavity analysis of AHb1 showed the presence of a novel long tunnel connecting the distal pockets of both the monomers. Presence of such tunnel, along with conformational heterogeneity observed in the two chains, might suggest cooperative ligand binding and support its role in NO scavenging. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号