首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I attempted to isolate synaptic vesicles by gel filtration. The rat brain synaptic vesicles in a synaptosomal lysate were collected by ammonium sulfate salting-out and fractionated on a Sephacryl S-500 with a mean exclusion size of 200 nm. Peak I at the void volume contained large vesicular membranes and coated vesicles besides synaptic vesicles; Peak II consisted almost entirely of small agranular synaptic vesicles of 40-50 nm diameter; and Peak III comprised soluble proteins. Western blotting revealed that components of 72 kDa in peaks I and II reacted with an anti-H(+)-ATPase A-subunit antibody [Moriyama et al. (1995) FEBS Lett. 367, 233-236]. When examined for Mg(2+)-ATPase activity, peak I showed specific activity of 4.52 ( micromol ATP hydrolyzed/mg protein/30 min), while that of peak II was as low as 0.22. As estimated from the inhibition by bafilomycin A(1) [Bowman et al. (1988) PROC: Natl. Acad. Sci. USA 85, 7972-7976], the percentage of H(+)-ATPase as to total Mg(2+)-ATPase, 18-22%, was unchanged, indicating no accumulation of the H(+)-ATPase in peak II even on the chromatography. In brief, the small agranular synaptic vesicles in peak II showed little or no Mg(2+)-ATPase activity, although they reacted with the H(+)-ATPase antibody. The reason for this is obscure. Mg(2+)-ATPase might not be a constituent of small agranular synaptic vesicles of rat brain.  相似文献   

2.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

3.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation.  相似文献   

4.
Rat brain synaptic vesicles were isoosmotically isolated and examined for Mg(2+)-ATPase [EC 3.6.1.3.] and tyrosine hydroxylase [EC 1.14.16.2.] associated with the synaptic vesicles. Synaptosomes in 0.32 M sucrose were disrupted by freezing and thawing treatment, and the cytosol fraction was fractionated on a Sephacryl S-500 column with a mean exclusion size of 200 nm. Peak I at the void volume was a mixture of large vesicular membranes, small amounts of synaptic vesicles and coated vesicles, etc. Peak II consisted of non- and granulated synaptic vesicles of 35-40 nm diameter, and peak III of soluble proteins. The synaptic vesicles in peak II reacted with antibodies against the H(+)-ATPase A-subunit, vesicular acetylcholine transporter, and vesicular monoamine transporter. However, they showed little Mg(2+)-ATPase activity. Tyrosine hydroxylase was observed in either peak II or III on blotting with an anti-tyrosine hydroxylase antibody. These results imply that tyrosine hydroxylase exists in soluble and bound forms to synaptic vesicles in nerve terminals.  相似文献   

5.
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.  相似文献   

6.
J Nandi  M A Zhou  T K Ray 《Biochemistry》1987,26(14):4264-4272
The microsomal (H+,K+)-ATPase systems from dog and pig fundic mucosa were purified to homogeneity and partially characterized. The method involves sodium dodecyl sulfate (SDS) (0.033% w/v) extraction of the microsomal non-ATPase proteins under appropriate conditions followed by sucrose density gradient centrifugation. Two distinct membrane bands of low (buoyant density = 1.08 g/mL) and high (buoyant density = 1.114 g/mL) densities having distinct enzymatic and chemical composition were harvested. The low-density membrane was highly enriched in Mg2+- or Ca2+-stimulated ATPase and 5'-nucleotidase activities but totally devoid of (H+,K+)-ATPase and K+-p-nitrophenylphosphatase activities. The latter two activities were found exclusively in the high-density membrane. SDS-polyacrylamide gel electrophoresis revealed the high-density membranes to consist primarily of a major 100-kilodalton (kDa) protein and a minor 85-kDa glycoprotein, the former being the catalytic subunit of the (H+,K+)-ATPase. The amino acid composition of the pure dog (H+,K+)-ATPase revealed close similarities with that from pig. The N-terminal amino acid was identified to be lysine as the sole residue. Similar to the high-density membrane-associated pure (H+,K+)-ATPase, the low-density membranes containing high Mg2+-ATPase activity also contained a 100-kDa peptide and a 85-kDa glycopeptide in addition to numerous low molecular weight peptides. Also, similar to the pure (H+,K+)-ATPase, the Mg2+-ATPase-rich fraction produced an E approximately P unstable to hydroxylamine and partially (about 25%) sensitive to K+ but having a slow turnover. The levels of E approximately P produced by the pure (H+,K+)-ATPase- and Mg2+-ATPase-rich fractions were 1400 and 178 pmol/mg of protein, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

8.
1. A membrane vesicle fraction containing a high (K+ + H+)-ATPase activity was isolated from porcine gastric mucosa. The enzyme has a pH optimum of 7.0 and is stimulated by T1+, K+, Rb+ and NH4+ with KA values of 0.13, 2.7, 7.6 and 26 mM, respectively, at this pH. 2. Incubation of the isolated membrane fraction with butanedione leads to inactivation of the (K+ + H+)-ATPase activity. The pH-dependence of the (K+ + H+)-ATPase activity. The pH-dependence of the inactivation and the reversibility of the reaction, observed after removal of excess butanedione and borate, indicate that modification of arginine is involved. 3. The inactivation of (K+ + H+)-ATPase activity by butanedione is time-dependent and follows second-order kinetics. From the dependence of the inactivation rate on the reagent concentration it appears that a single arginine residue is involved in the inactivation of the (K+ + H+)-ATPase activity. 4. ATP, deoxy-ATP, ADP and adenylyl imidodiphosphate (AMPPNP), but not CTP, GTP and ITP which are poor substrates, protect the enzyme against butanedione inactivation, suggesting that the essential arginine residue is located in the ATP binding centre. 5. In the presence of Mg2+ the butanedione inactivation is increased, and the protection by ATP, deoxy-ATP and ADP (but not that by AMPPNP) is less pronounced. This suggests that Mg2+ induces a conformational change in the enzyme, exposing the arginine group and coinciding with phosphorylation and subsequent release of ADP from its binding site.  相似文献   

9.
用生物膜的拆离与重建技术,研究了Mg2+对阿霉素(Adriamycin,ADM)抑制猪心线粒体H+-ATP酶及其重建脂酶体(L·H+-ATP酶)活性的影响。用胆酸盐透析方法将H+-ATP酶在大豆磷脂脂质体上重建。实验结果表明,重建H+-ATP酶的ADM的敏感性较仅纯化而未重建者明显增加,这提示ADM的抑制作用依赖于磷脂。但是,在有Mg2+(1mmol/L)条件下重建的H+-ATP酶对ADM的敏感性较无Mg2+者却又显著降低,这提示Mg2+对ADM抑制线粒体H+-ATP酶的作用具有拮抗效应。Mg2+的这种拮抗效应是与其在透析重建H+-ATP酶过程中诱导脂酶体的磷脂的物理状态的改变相关的。所得实验结果对于阐明ADM抑制线粒体H+-ATP酶的作用机理与磷脂的相关性提供了较直接的实验证据。  相似文献   

10.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The ionic influence and ouabain sensitivity of lymphocyte mg-2+-atpase and Mg-2+-(Na+ +K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5'-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ +K+)-ATPase was located inside the membrane. Concanavalin A induced an early stimulation of Mg2+-APTase and (Na+ +K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5'-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3-5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20%). (Na+ +K+)-ATPase activity was undectectable in thymocytes. However, in spleen lymphocytes (Na+ +K+)-ATPase activity can be detected and was 30% increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

12.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4 X 10(11) is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

13.
14.
We characterized Mg(2+)-dependent ATPase activity in membranes from the renal cortex, the outer and inner stripes of the outer medulla, and papillary vesicles. In all regions, there was Mg(2+)-dependent ATPase activity that was resistant to oligomycin and vanadate and sensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide, and filipin. DCCD-Sensitive Mg(2+)-ATPase activity was highest in the inner stripe of the outer medulla and lowest in the cortex, with intermediate values in the outer stripe of the outer medulla and papilla. The Km for ATP, however, was similar among the different regions of the kidney. DCCD-Sensitive Mg(2+)-ATPase activity was critically dependent upon chloride with Km for Cl- in the range of 2-5 mM. In the presence of ATP, this ATPase was capable of H+ translocation, as assessed by acridine orange quenching. Inhibitors of ATPase activity prevented H+ translocation, which suggests that the Mg(2+)-ATPase represents, at least in part, an H(+)-ATPase. H+ transport was likewise critically dependent upon chloride, with similar Km. The effect of chloride on H+ translocation was blocked by the chloride channel inhibitor, diphenylamine-2 carboxylic acid. In the absence of chloride, H+ transport was abolished, but it could be partially restored by the creation of a favorable electric gradient by K+ and valinomycin. These studies demonstrate that the renal H(+)-ATPase exhibits different activities in various regions of the kidney. The ATPase activity and H+ translocation are critically dependent upon the presence of chloride, which suggests that chloride influences H+ translocation by dissipating the H+ gradient and acting at the catalytic site of the ATPase.  相似文献   

15.
Purified gastric (H(+)+K+)-transporting ATPase [(H(+)+K+)-ATPase] from the parietal cells always contains a certain amount of basal Mg2(+)-dependent ATPase (Mg2(+)-ATPase) activity. lin-Benzo-ATP (the prefix lin refers to the linear disposition of the pyrimidine, benzene and imidazole rings in the 'stretched-out' version of the adenine nucleus), an ATP analogue with a benzene ring formally inserted between the two rings composing the adenosine moiety, is an interesting substrate not only because of its fluorescent behaviour, but also because of its geometric properties. lin-Benzo-ATP was used in the present study to elucidate the possible role of the basal Mg2(+)-ATPase activity in the gastric (H(+)+K+)-ATPase preparation. With lin-benzo-ATP the enzyme can be phosphorylated such that a conventional phosphoenzyme intermediate is formed. The rate of the phosphorylation reaction, however, is so low that this reaction with subsequent dephosphorylation cannot account for the much higher rate of hydrolysis of lin-benzo-ATP by the enzyme. This apparent kinetic discrepancy indicates that lin-benzo-ATP is not a substrate for the (H(+)+K+)-ATPase reaction cycle. This idea was further supported by the finding that lin-benzo-ATP was unable to catalyse H+ uptake by gastric-mucosa vesicles. The breakdown of lin-benzo-ATP by the (H(+)+K+)-ATPase preparation must be due to a hydrolytic activity which is not involved in the ion-transporting reaction cycle of the (H(+)+K+)-ATPase itself. Comparison of the basal Mg2(+)-ATPase activity (with ATP as substrate) with the hydrolytic activity of (H(+)+K+)-ATPase using lin-benzo-ATP as substrate and the effect of the inhibitors omeprazole and SCH 28080 support the notion that lin-benzo-ATP is not hydrolysed by the (H(+)+K+)-ATPase, but by the basal Mg2(+)-ATPase, and that the activity of the latter enzyme is not involved in the (H(+)+K+)-transporting reaction cycle (according to the Albers-Post formalism) of (H(+)+K+)-ATPase.  相似文献   

16.
Sidedness of synaptic plasma membrane vesicles isolated from brain synaptosomes has been assessed by two distinct experimental approaches: first, analysis of (Na+ + K+)-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities before and after permeabilization of vesicles; second, analysis of Ca2+ fluxes via the Na+/Ca2+ exchanger, before and after modification of an imposed Na+ gradient by penetrating or nonpenetrating Na+ channel-modifying drugs. 0.05% saponin, which completely permeabilizes the vesicles, increases digitoxigenin-sensitive (Na+ + K+)-ATPase, basal Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities by 51.0, 47.4, and 83.6%, respectively. Saponin increases only the Vmax of the latter activity, the Km for Ca2+ (0.13 microM; the same as that for Ca2+-pumping) being unaltered by saponin. An increment of 20.5% in the Vmax of (Ca2+ + Mg2+)-ATPase activity with 10 microM A23187, reveals that the enzyme activity in nonpermeabilized vesicles is limited by the formation of a Ca2+ gradient. Thus, the saponin-induced increment in (Ca2+ + Mg2+)-ATPase due only to exposure of occluded sites (as opposed to Ca2+ gradient dissipation) is actually 52%, which is similar to values for both other ATPases, and suggests that 32-35% of plasma membranes exist in an inverted orientation. Vesicle orientation was independently assessed by the differential actions of tetrodotoxin (a membrane impermeant blocker) and veratridine (a membrane permeant agonist) on Na+-channel opening measured indirectly by dissipation of an imposed Na+ gradient utilized to drive a large 45Ca2+ accumulation via the Na+/Ca2+ exchanger. Tetrodotoxin reverses 35-44% of veratridine-mediated Na+ gradient-dissipation, the relative membrane-permeability of the two channel modifiers, suggesting that 56-65% of sealed vesicles are inverted. The concurrence of these two independent measurements of vesicle orientation reinforces their validity.  相似文献   

17.
1. A high-affinity (Ca2+ + Mg2+)-ATPase and a low-affinity Mg(2+)-ATPase were identified in the 105,000 g fraction from epimastigote forms of Trypanosoma cruzi, the agent of Chagas' disease (Tulahuen strain). 2. Activities were conserved after enzyme solubilization with deoxycholate. 3. The Ca(2+)-stimulated ATPase activity was (a) lower than that of the Mg(2+)-ATPase; (b) inhibited by p-chloromercurobenzoate and orthovanadate and (c) insensitive to oligomycin. 4. Optimal stimulation by Ca2+ was observed at pH 6.5-6.8 in the presence of 1 mM MgCl2 and 0.1 M KCl. 5. The Mg(2+)-ATPase was insensitive to p-chloromercurobenzoate and orthovanadate and did not require KCl for activity. 6. Kinetic analysis of the (Ca2+ + Mg2+)-ATPase yielded a half-maximal stimulating concentration of 1.1 microM for Ca2+ and a Km of 66 microM for ATP. 7. The (Ca2+ + Mg2+)-ATPase clearly differed from the Ca(2+)- or Mg(2+)-ATPases previously characterized in the same strain of T. cruzi (Frasch et al., 1978; Comp. Biochem. Physiol. 60B, 271-275).  相似文献   

18.
Resting rat light gastric membranes prepared through 2H2O and Percoll gradient centrifugations were enriched not only with (H+-K+)-ATPase and K+ transport activity (Im, W. B., Blakeman, D. P., and Davis, J. P. (1985) J. Biol. Chem. 260, 9452-9460), but also with a K+-independent, ATP-dependent H+-pumping activity. This intravesicular acidification has been ascribed to an oligomycin-insensitive H+-ATPase which differed from (H+-K+)-ATPase in several respects. The H+-ATPase is electrogenic, apparently of lower capacity, required a lower optimal ATP concentration (4 microM for the H+-ATPase and 500 microM for (H+-K+)-ATPase), of lower sensitivity to vanadate and sulfhydryl agents such as p-chloromercuribenzoate and N-ethylmaleimide, and insensitive to SCH 28,080, a known competitive inhibitor of (H+-K+)-ATPase with respect to K+. Operation of the H+-ATPase, however, appeared to interfere with the K+ transport activity in the light gastric membranes, probably through development of intravesicular positive membrane potential; for example, micromolar levels of Mg2+-ATP fully inhibited K+ uptake and stimulated K+ efflux as measured with 86Rb+. Involvement of (H+-K+)-ATPase in the K+ transport is not likely, since the inhibitory effect of Mg2+-ATP continued even after removal of the nucleotide with an ATP-scavenging system. Moreover, nigericin, an electroneutral H+/K+ exchanger, could bypass the inhibitory effect of Mg2+-ATP and equilibrate the membrane vesicles with 86Rb+ while valinomycin, an electrogenic K+ ionophore, could not. Finally, the H+-ATPase could possibly be involved in the acid secretory process, since its H+-pumping activity was removed from the light gastric membrane fraction upon carbachol treatment, along with the K+ transport and (H+-K+)-ATPase activities. We have speculated that the H+-ATPase is responsible for maintaining the K+-permeable intracellular membrane vesicles acidic and K+ free during the resting state of acid secretion and may contribute to basal acid secretion.  相似文献   

19.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

20.
A Ca(2+)-ATPase with an apparent Km for free Ca2+ = 0.23 microM and Vmax = 44 nmol Pi/mg/min was detected in a rat parotid plasma membrane-enriched fraction. This Ca(2+)-ATPase could be stimulated without added Mg2+. However, the enzyme may require submicromolar concentrations of Mg2+ for its activation in the presence of Ca2+. On the other hand, Mg2+ could substitute for Ca2+. The lack of a requirement for added Mg2+ distinguished this Ca(2+)-ATPase from the Ca(2+)-transporter ATPase in the plasma membranes and the mitochondrial Ca(2+)-ATPase. The enzyme was not inhibited by several ATPase inhibitors and was not stimulated by calmodulin. An antibody which was raised against the rat liver plasma membrane ecto-ATPase, was able to deplete this Ca(2+)-ATPase activity from detergent solubilized rat parotid plasma membranes, in an antibody concentration-dependent manner. Immunoblotting analysis of the pellet with the ecto-ATPase antibody revealed the presence of a 100,000 molecular weight protein band, in agreement with the reported ecto-ATPase relative molecular mass. These data demonstrate the presence of a Ca(2+)-ATPase, with high affinity for Ca2+, in the rat parotid gland plasma membranes. It is distinct from the Ca(2+)-transporter, and immunologically indistinguishable from the plasma membrane ecto-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号