首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25+/-4 microM) and seven times lower in normally cultured HL-1 cells (47+/-15 microM) than in permeabilized primary cardiomyocytes (360+/-51 microM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   

2.
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.  相似文献   

3.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25 ± 4 μM) and seven times lower in normally cultured HL-1 cells (47 ± 15 μM) than in permeabilized primary cardiomyocytes (360 ± 51 μM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   

4.
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).  相似文献   

5.
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.  相似文献   

6.
Mitochondria are dynamic structures for which fusion and fission are well characterized for rapidly dividing cells in culture. Based on these data, it has recently been proposed that high respiratory activity is the result of fusion and formation of mitochondrial reticulum, while fission results in fragmented mitochondria with low respiratory activity. In this work we test the validity of this new hypothesis by analyzing our own experimental data obtained in studies of isolated heart mitochondria, permeabilized cells of cardiac phenotype with different mitochondrial arrangement and dynamics. Additionally, we reviewed published data including electron tomographic investigation of mitochondrial membrane-associated structures in heart cells. Oxygraphic studies show that maximal ADP-dependent respiration rates are equally high both in isolated heart mitochondria and in permeabilized cardiomyocytes. On the contrary, these rates are three times lower in NB HL-1 cells with fused mitochondrial reticulum. Confocal and electron tomographic studies show that there is no mitochondrial reticulum in cardiac cells, known to contain 5,000–10,000 individual, single mitochondria, which are regularly arranged at the level of sarcomeres and are at Z-lines separated from each other by membrane structures, including the T-tubular system in close connection to the sarcoplasmic reticulum. The new structural data in the literature show a principal role for the elaborated T-tubular system in organization of cell metabolism by supplying calcium, oxygen and substrates from the extracellular medium into local domains of the cardiac cells for calcium cycling within Calcium Release Units, associated with respiration and its regulation in Intracellular Energetic Units.  相似文献   

7.
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These “non-canonical” roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

8.
The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.  相似文献   

9.
Resveratrol is a natural dietary polyphenol found in grape skin, red wine, and various other food products. Resveratrol has proved to be an effective chemopreventive agent for different malignant tumors. It has also been shown to prevent vascular alterations such as atherosclerosis and inflammatory-associated events. In view of these observations, we investigated the anti-proliferative and pro-apoptotic activities of resveratrol on a tumoral cardiac cell line (HL-1 NB) derived from mouse tumoral atrial cardiac myocytes. These effects were compared with those found on normal neonatal mouse cardiomyocytes. HL-1 NB cells and neonatal cardiomyocytes were treated with resveratrol (5, 30, and/or 100 μM) for different times of culture (24, 48, and/or 72 h). Resveratrol effects were determined by various microscopical and flow cytometric methods. After resveratrol treatment, a strong inhibition of tumoral cardiac HL1-NB cell growth associated with a loss of cell adhesion was observed. This cell proliferation arrest was associated with an apoptotic process revealed by an increased percentage of cells with fragmented and/or condensed nuclei (characteristic of apoptotic cells) identified after staining with Hoechst 33342 and by the presence of cells in subG1. At the opposite, on normal cardiomyocytes, no cytotoxic effects of resveratrol were observed, and a protective effect of resveratrol against norepinephrine-induced apoptosis was found on normal cardiomyocytes. Altogether, the present data demonstrate that resveratrol (1) induces apoptosis of tumoral cardiac HL1-NB cells, (2) does not induce cell death on normal cardiomyocytes, and (3) prevents norepinephrine-induced apoptosis on normal cardiomyocytes.  相似文献   

10.
Mitochondria-cytoskeleton interactions were analyzed in adult rat cardiomyocytes and in cancerous non-beating HL-1 cells of cardiac phenotype. We show that in adult cardiomyocytes βII-tubulin is associated with mitochondrial outer membrane (MOM). βI-tubulin demonstrates diffused intracellular distribution, βIII-tubulin is colocalized with Z-lines and βIV-tubulin forms microtubular network. HL-1 cells are characterized by the absence of βII-tubulin, by the presence of bundles of filamentous βIV-tubulin and diffusely distributed βI- and βIII-tubulins. Mitochondrial isoform of creatine kinase (MtCK), highly expressed in cardiomyocytes, is absent in HL-1 cells. Our results show that high apparent K(m) for exogenous ADP in regulation of respiration and high expression of MtCK both correlate with the expression of βII-tubulin. The absence of βII-tubulin isotype in isolated mitochondria and in HL-1 cells results in increased apparent affinity of oxidative phosphorylation for exogenous ADP. This observation is consistent with the assumption that the binding of βII-tubulin to mitochondria limits ADP/ATP diffusion through voltage-dependent anion channel of MOM and thus shifts energy transfer via the phosphocreatine pathway. On the other hand, absence of both βII-tubulin and MtCK in HL-1 cells can be associated with their more glycolysis-dependent energy metabolism which is typical for cancer cells (Warburg effect).  相似文献   

11.
《Autophagy》2013,9(4):462-472
Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) than cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control.  相似文献   

12.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

13.
Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane fusion protein Marf in the Drosophila type II NB lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers of type II NBs but led to a decrease in differentiated progeny. Opa1 depletion decreased the mature intermediate precursor cells (INPs), ganglion mother cells (GMCs) and neurons by the decreased proliferation of the type II NBs and mature INPs. Marf depletion led to a decrease in neurons by a depletion of proliferation of GMCs. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial clustering but did not show defects in differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial clustering and suppressed the loss of mitochondrial activity and defects in proliferation and differentiation in the type II NB lineage. Opa1 depletion led to decreased Notch signaling in the type II NB lineage. Further, Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 depletion. An increase in Notch signaling showed mitochondrial clustering similar to Drp1 mutants. Further, Drp1 mutant overexpression combined with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage, suggesting that fused mitochondria can influence differentiation in the type II NB lineage. Our results implicate crosstalk between proliferation, Notch signaling, mitochondrial activity and fusion as an essential step in differentiation in the type II NB lineage.  相似文献   

14.
Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis, including mitochondrial DNA (mtDNA) distribution. Cardiac myocytes have a specialized cytoplasmic structure where large mitochondria are aligned into tightly packed myofibril bundles; however, recent studies have revealed that mitochondrial dynamics also plays an important role in the formation and maintenance of cardiomyocytes. Here, we precisely analyzed the role of mitochondrial fission in vivo. The mitochondrial fission GTPase, Drp1, is highly expressed in the developing neonatal heart, and muscle-specific Drp1 knockout (Drp1-KO) mice showed neonatal lethality due to dilated cardiomyopathy. The Drp1 ablation in heart and primary cultured cardiomyocytes resulted in severe mtDNA nucleoid clustering and led to mosaic deficiency of mitochondrial respiration. The functional and structural alteration of mitochondria also led to immature myofibril assembly and defective cardiomyocyte hypertrophy. Thus, the dynamics of mtDNA nucleoids regulated by mitochondrial fission is required for neonatal cardiomyocyte development by promoting homogeneous distribution of active mitochondria throughout the cardiomyocytes.  相似文献   

15.
Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission–fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were ( i ) fast fission and fusion; ( ii ) small oscillating movements of the mitochondrial network; ( iii ) larger movements, including filament extension, retraction, fast (0.1–0.3 μm/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; ( iv ) as well as combinations of these actions and ( v ) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 μm/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems.  相似文献   

16.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

17.
18.
Yme1L is an AAA protease that is embedded in the mitochondrial inner membrane with its catalytic domain facing the mitochondrial inner-membrane space. However, how Yme1L regulates mammalian mitochondrial function is still obscure. We find that endogenous Yme1L locates at punctate structures of mitochondria, and that loss of Yme1L in mouse embryonic fibroblast (MEF) cells results in mitochondrial fragmentation and leads to significant increased ‘kiss-and-run'' type of mitochondrial fusion; however, Yme1L knockdown (shYme1L (short hairpin-mediated RNA interference of Yme1L)) cells still remain normal mitochondrial fusion although shYme1L mitochondria have a little bit less fusion and fission rates, and the shYme1L-induced fragmentation is due to a little bit more mitochondrial fission than fusion in cells. Furthermore, shYme1L-induced mitochondrial fragmentation is independent on optic atrophy 1 (OPA1) S1 or S2 processing, and shYme1L results in the stabilization of OPA1 long form (L-OPA1); in addition, the exogenous expression of OPA1 or L-OPA1 facilitates the shYme1L-induced mitochondrial fragmentation, thus this fragmentation induced by shYme1L appears to be associated with L-OPA1''s stability. ShYme1L also causes a slight increase of mitochondrial dynamics proteins of 49 kDa and mitochondrial fission factor (Mff), which recruit mitochondrial key fission factor dynamin-related protein 1 (Drp1) into mitochondria in MEF cells, and loss of Drp1 or Mff inhibits the shYme1L-induced mitochondrial fragmentation. In addition, there is interaction between SLP-2 with Yme1L and shYme1L cells retain stress-induced mitochondrial hyperfusion. Taken together, our results clarify how Yme1L regulates mitochondrial morphology.  相似文献   

19.
This study is aimed to determine the role of calcium signaling evoked by the calcium-mobilizing agonist uridine-5′-triphosphate (UTP) and by the specific inhibitor of the endoplasmic reticulum calcium reuptake thapsigargin on caspase activation in human leukemia cell line HL-60. We have analyzed cytosolic free calcium concentration ([Ca2+]c) determination, mitochondrial membrane potential and caspase-3 and -9 activity by fluorimetric methods, using the fluorescent ratiometric calcium indicator Fura-2, the dye JC-1, and specific fluorogenic substrate, respectively. Our results indicated that treatment of HL-60 cells with 10 μM UTP or 1 μM thapsigargin induced a transient increase in [Ca2+]c due to calcium release from internal stores. The stimulatory effect of UTP and thapsigargin on calcium signal was followed by a mitochondrial membrane depolarization. Our results also indicated that UTP and thapsigargin were able to increase the caspase-3 and -9 activities. The effect of UTP and thapsigargin on caspase activation was time dependent, reaching a maximal caspase activity after 60 min of stimulation. Loading of cells with 10 μM dimethyl BAPTA, an intracellular calcium chelator, for 30 min significantly reduced both UTP- or thapsigargin-induced mitochondrial depolarization and caspase activation. Similar results were obtained when the cells were pretreated with 10 μM Ru360 for 30 min, a specific blocker of calcium uptake into mitochondria. The findings suggest that UTP- and thapsigargin-induced caspase-3 and -9 activation and mitochondrial membrane depolarization is dependent on rises in [Ca2+]c in human myeloid HL-60 cells.  相似文献   

20.
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号