首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.  相似文献   

5.
6.
During inflammatory immune responses, the innate cytokine IL-12 promotes CD4+ Th-1 development through the activation of the second messenger STAT4 and the subsequent expression of T-bet. In addition, type I IFN (IFN-alphabeta), secreted primarily during viral and intracellular bacterial infections, can promote STAT4 activation in human CD4+ T cells. However, the role of IFN-alphabeta in regulating Th1 development is controversial, and previous studies have suggested a species-specific pathway leading to Th1 development in human but not mouse CD4+ T cells. In this study, we found that although both IFN-alpha and IL-12 can promote STAT4 activation, IFN-alpha failed to promote Th1 commitment in human CD4+ T cells. The difference between these innate signaling pathways lies with the ability of IL-12 to promote sustained STAT4 tyrosine phosphorylation, which correlated with stable T-bet expression in committed Th1 cells. IFN-alpha did not promote Th1 development in human CD4+ T cells because of attenuated STAT4 phosphorylation, which was insufficient to induce stable expression of T-bet. Further, the defect in IFN-alpha-driven Th1 development was corrected by ectopic expression of T-bet within primary naive human CD4+ T cells. These results indicate that IL-12 remains unique in its ability to drive Th1 development in human CD4+ T cells and that IFN-alpha lacks this activity due to its inability to promote sustained T-bet expression.  相似文献   

7.
8.
9.
Th17 cells are implicated in CNS autoimmune diseases. We show that mice with targeted-deletion of Stat3 in CD4(+) T cells (CD4(Stat3)(-/-)) do not develop experimental autoimmune uveoretinitis (EAU) or experimental autoimmune encephalomyelitis. Defective Th17 differentiation noted in CD4(Stat3)(-/-) mice is compensated by exaggerated increases in Foxp3-, IL-10-, IL-4-, and IFN-gamma-expressing T cells, suggesting critical roles of STAT3 in shaping Ag-specific CD4(+) T cell repertoire. In mice with EAU, a high percentage of IL-17-expressing T cells in their peripheral lymphoid organs also secrete IFN-gamma while these double-expressors are absent in CD4(Stat3)(-/-) and wild-type mice without EAU, raising the intriguing possibility that uveitis maybe mediated by Th17 and IL-17-expressing Th1 cells. Resistance of Stat3-deficient mice to EAU derives in part from an inability of uveitogenic Th17 and Th1 cells to enter eyes or brain of the CD4(Stat3)(-/-) mouse because of the reduction in the expression of activated alpha4/beta1 integrins on CD4(Stat3)(-/-) T cells. Adoptive transfer of activated interphotoreceptor retinoid-binding protein-specific uveitogenic T cells induced in CD4(Stat3)(-/-) mice a severe EAU characterized by development of retinal folds, infiltration of inflammatory cells into the retina, and destruction of retinal architecture, underscoring our contention that the loss of STAT3 in CD4(+) T cells results in an intrinsic developmental defect that renders CD4(Stat3)(-/-) resistant to CNS inflammatory diseases. STAT3 requirement for IL-17 production by Th17, generation of double positive T cells expressing IL-17 and IFN-gamma, and for T cell trafficking into CNS tissues suggests that STAT3 may be a therapeutic target for modulating uveitis, sceritis, or multiple sclerosis.  相似文献   

10.
The generation of Th1 responses is important for resistance to intracellular pathogens, including the parasite, Leishmania major. Although IFN-gammaR/STAT1 signaling promotes a Th1 response via the up-regulation of T-bet, the requirement for STAT1 in Th1 cell differentiation remains controversial. Although in some cases Th1 cells develop independently of STAT1, STAT1(-/-) mice fail to develop a Th1 response during L. major infection. However, the interpretation of this result is complicated by the role STAT1 plays in Ag presentation and, more importantly, in elimination of parasites by macrophages, because both defective Ag presentation and increased parasite burden can influence Th cell development. To resolve this issue, we assessed the ability of STAT1(-/-) T cells to become Th1 cells and protect mice against L. major following adoptive transfer into STAT1-sufficient mice. We found that whereas T-bet is critical for the differentiation of protective Th1 cells during L. major infection, IFN-gammaR and STAT1 are dispensable. Given that a STAT1-independent Th1 cell response was generated by STAT1-sufficient APCs, but not by STAT1(-/-) cells, we next addressed whether dendritic cells (DCs) require STAT1 signaling to effectively present Ag. We found that STAT1(-/-) DCs had impaired up-regulation of MHC and costimulatory molecules, and, as a consequence, the absence of STAT1 resulted in reduced Th1 cell priming. Taken together, these results demonstrate that T cell expression of STAT1 is not required for the development of Th1 cells protective against L. major and instead stress the importance of STAT1 signaling in DCs for the optimal induction of Th1 responses.  相似文献   

11.
Th17 play a central role in autoimmune inflammatory responses. Th1 are also necessary for autoimmune disease development. The interplay of Th1 signals and how they coordinate with Th17 during inflammatory disease pathogenesis are incompletely understood. In this study, by adding Stat4 deficiency to Stat6/T-bet double knockout, we further dissected the role of Stat4 in Th1 development and colitis induction. We showed that in the absence of the strong Th2 mediator Stat6, neither Stat4 nor T-bet is required for IFN-γ production and Th1 development. However, addition of Stat4 deficiency abolished colitis induced by Stat6/T-bet double-knockout cells, despite Th1 and Th17 responses. The failure of colitis induction by Stat4/Stat6/T-bet triple-knockout cells is largely due to elevated Foxp3(+) regulatory T cell (Treg) development. These results highlight the critical role of Stat4 Th1 signals in autoimmune responses in suppressing Foxp3(+) Treg responses and altering the balance between Th17 and Tregs to favor autoimmune disease.  相似文献   

12.
13.
Given the association with autoimmune disease, there is great interest in defining cellular factors that limit overactive or misdirected Th17-type inflammation. Using in vivo and in vitro models, we investigated the molecular mechanisms for cytokine-mediated inhibition of Th17 responses, focusing on the role of STAT1 and T-bet in this process. These studies demonstrate that, during systemic inflammation, STAT1- and T-bet-deficient T cells each exhibit a hyper-Th17 phenotype relative to wild-type controls. However, IL-17 production was greater in the absence of T-bet, and when both STAT1 and T-bet were deleted, there was no further increase, with the double-deficient cells instead behaving more like STAT1-deficient counterparts. Similar trends were observed during in vitro priming, with production of Th17-type cytokines greater in T-bet(-/-) T cells than in either STAT1(-/-) or STAT1(-/-) T-bet(-/-) counterparts. The ability of IFN-γ and IL-27 to suppress Th17 responses was reduced in T-bet-deficient cells, and most importantly, ectopic T-bet could suppress signature Th17 gene products, including IL-17A, IL-17F, IL-22, and retinoic acid-related orphan receptor γT, even in STAT1-deficient T cells. Taken together, these studies formally establish that, downstream of IFN-γ, IL-27, and likely all STAT1-activating cytokines, there are both STAT1 and T-bet-dependent pathways capable of suppressing Th17 responses.  相似文献   

14.
Several lines of evidence suggest that an IFN-gamma-producing, Th1/Tc1 phenotype may be optimal for tumor rejection. Recent work has indicated that IFN signaling on tumor cells is important for protection against carcinogenesis. However, the potential involvement of IFN signaling among host immune cells has not been carefully examined. To this end, Stat1-deficient mice were employed as tumor recipients. In contrast to wild-type mice, Stat1-/- mice failed to reject immunogenic tumors and did not support regression of poorly immunogenic tumors when treated with an IL-12-based vaccine. T cells from immunized Stat1-/- mice produced 50% of the levels of IFN-gamma and lacked cytolytic activity compared with wild-type mice, and NK lytic activity also was not observed. Lack of cytolytic function correlated with a failure to up-regulate serine esterase activity. Thus, IFN-mediated signaling on host cells is required for the development of antitumor lytic effector cells.  相似文献   

15.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

16.
TGF-beta1 plays a critical role in restraining pathogenic Th1 autoimmune responses in vivo, but the mechanisms that mediate TGF-beta1's suppressive effects on CD4(+) T cell expression of IFN-gamma expression remain incompletely understood. To evaluate mechanisms by which TGF-beta1 inhibits IFN-gamma expression in CD4(+) T cells, we primed naive wild-type murine BALB/c CD4(+) T cells in vitro under Th1 development conditions in the presence or the absence of added TGF-beta1. We found that the presence of TGF-beta1 during priming of CD4(+) T cells suppressed both IFN-gamma expression during priming as well as the development of Th1 effector cells expressing IFN-gamma at a recall stimulation. TGF-beta1 inhibited the development of IFN-gamma-expressing cells in a dose-dependent fashion and in the absence of APC, indicating that TGF-beta1 can inhibit Th1 development by acting directly on the CD4(+) T cell. During priming, TGF-beta1 strongly inhibited the expression of both T-bet (T box expressed in T cells) and Stat4. We evaluated the importance of these two molecules in the suppression of IFN-gamma expression at the two phases of Th1 responses. Enforced expression of T-bet by retrovirus prevented TGF-beta1's inhibition of Th1 development, but did not prevent TGF-beta1's inhibition of IFN-gamma expression at priming. Conversely, enforced expression of Stat4 partly prevented TGF-beta1's inhibition of IFN-gamma expression during priming, but did not prevent TGF-beta1's inhibition of Th1 development. These data show that TGF-beta1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4(+) T cells at priming and at recall.  相似文献   

17.
18.
The role of type I IFN in Th1 development, STAT4 activation, and IFN-gamma production in murine T cells has remained unresolved despite extensive examination. Initial studies indicated that IFN-alpha induced Th1 development and IFN-gamma production in human, but not murine, T cells, suggesting species-specific differences in signaling. Later studies suggested that IFN-alpha also induced Th1 development in mice, similar to IL-12. More recent studies have questioned whether IFN-alpha actually induces Th1 development even in the human system. In the present study, we compared the capacity of IL-12 and IFN-alpha to induce Th1 differentiation, STAT4 phosphorylation, and IFN-gamma production in murine T cells. First, we show that IFN-alpha, in contrast to IL-12, cannot induce Th1 development. However, in differentiated Th1 cells, IFN-alpha can induce transient, but not sustained, STAT4 phosphorylation and, in synergy with IL-18, can induce transient, but not sustained, IFN-gamma production in Th1 cells, in contrast to the sustained actions of IL-12. Furthermore, loss of STAT1 increases IFN-alpha-induced STAT4 phosphorylation, but does not generate levels of STAT4 activation or IFN-gamma production achieved by IL-12 or convert transient STAT4 activation into a sustained response. Our findings agree with recent observations in human T cells that IFN-alpha-induced STAT4 activation is transient and unable to induce Th1 development, and indicate that IFN-alpha may act similarly in human and murine T cells.  相似文献   

19.
20.
T-bet and STAT4 play critical roles in helper T cell differentiation, especially for Th1 cells. However, it is still unknown about the relative importance and redundancy of T-bet and STAT4 for Th1 differentiation. It is also unknown about their independent role of T-bet and STAT4 in the regulation of allergic airway inflammation. In this study, we addressed these issues by comparing T-bet-deficient (T-bet(-/-)) mice, STAT4(-/-) mice, and T-bet- and STAT4-double-deficient (T-bet(-/-)STAT4(-/-)) mice on the same genetic background. Th1 differentiation was severely decreased in T-bet(-/-) mice and STAT4(-/-) mice as compared with that in wild-type mice, but Th1 differentiation was still observed in T-bet(-/-) mice and STAT4(-/-) mice. However, Th1 cells were hardly detected in T-bet(-/-)STAT4(-/-) mice. In contrast, the maintenance of Th17 cells was enhanced in T-bet(-/-) mice but was reduced in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. In vivo, Ag-induced eosinophil and neutrophil recruitment into the airways was enhanced in T-bet(-/-) mice but was attenuated in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. Ag-induced IL-17 production in the airways was also diminished in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. These results indicate that STAT4 not only plays an indispensable role in T-bet-independent Th1 differentiation but also is involved in the maintenance of Th17 cells and the enhancement of allergic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号