首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
An important problem in agronomy is the study of longitudinal data on the growth curve of the weight of cattle through time, possibly taking into account the effect of other explanatory variables such as treatments and time. In this paper, a Bayesian approach for analysing longitudinal data is proposed. It takes into account regression structures on the mean and the variance‐covariance matrix of normal observations. The approach is based on the modeling strategy suggested by Pourahmadi (1999, Biometrika 86, 667–690). After revising this methodology, we present the Bayesian approach used to fit the models, based on a generalization of the Metropolis‐Hastings algorithm of Cepeda and Gamerman (2000, Brazilian Journal of Probability and Statistics, 14 , 207–221). The approach is used to the study of growth and development of a group of deaf children. The paper is concluded with a few proposed extensions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
  总被引:5,自引:0,他引:5  
Song PX  Tan M 《Biometrics》2000,56(2):496-502
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries.  相似文献   

3.
    
Stoklosa J  Hwang WH  Wu SH  Huggins R 《Biometrics》2011,67(4):1659-1665
In practice, when analyzing data from a capture-recapture experiment it is tempting to apply modern advanced statistical methods to the observed capture histories. However, unless the analysis takes into account that the data have only been collected from individuals who have been captured at least once, the results may be biased. Without the development of new software packages, methods such as generalized additive models, generalized linear mixed models, and simulation-extrapolation cannot be readily implemented. In contrast, the partial likelihood approach allows the analysis of a capture-recapture experiment to be conducted using commonly available software. Here we examine the efficiency of this approach and apply it to several data sets.  相似文献   

4.
    
Neuhaus JM 《Biometrics》2002,58(3):675-683
Misclassified clustered and longitudinal data arise in studies where the response indicates a condition identified through an imperfect diagnostic procedure. Examples include longitudinal studies that use an imperfect diagnostic test to assess whether or not an individual has been infected with a specific virus. This article presents methods to implement both population-averaged and cluster-specific analyses of such data when the misclassification rates are known. The methods exploit the fact that the class of generalized linear models enjoys a closure property in the case of misclassified responses. Data from longitudinal studies of infectious disease will illustrate the findings.  相似文献   

5.
  总被引:2,自引:0,他引:2  
Bartolucci F  Forcina A 《Biometrics》2001,57(3):714-719
In this article, we show that, if subjects are assumed to be homogeneous within a finite set of latent classes, the basic restrictions of the Rasch model (conditional independence and unidimensionality) can be relaxed in a flexible way by simply adding appropriate columns to a basic design matrix. When discrete covariates are available so that subjects may be classified into strata, we show how a joint modeling approach can achieve greater parsimony. Parameter estimates may be obtained by maximizing the conditional likelihood (given the total number of captures) with a combined use of the EM and Fisher scoring algorithms. We also discuss a technique for obtaining confidence intervals for the size of the population under study based on the profile likelihood.  相似文献   

6.
7.
    
Huang X 《Biometrics》2009,65(2):361-368
Summary .  Generalized linear mixed models (GLMMs) are widely used in the analysis of clustered data. However, the validity of likelihood-based inference in such analyses can be greatly affected by the assumed model for the random effects. We propose a diagnostic method for random-effect model misspecification in GLMMs for clustered binary response. We provide a theoretical justification of the proposed method and investigate its finite sample performance via simulation. The proposed method is applied to data from a longitudinal respiratory infection study.  相似文献   

8.
9.
  总被引:15,自引:0,他引:15  
Pan W 《Biometrics》2001,57(1):120-125
Correlated response data are common in biomedical studies. Regression analysis based on the generalized estimating equations (GEE) is an increasingly important method for such data. However, there seem to be few model-selection criteria available in GEE. The well-known Akaike Information Criterion (AIC) cannot be directly applied since AIC is based on maximum likelihood estimation while GEE is nonlikelihood based. We propose a modification to AIC, where the likelihood is replaced by the quasi-likelihood and a proper adjustment is made for the penalty term. Its performance is investigated through simulation studies. For illustration, the method is applied to a real data set.  相似文献   

10.
We propose an extension to the estimating equations in generalized linear models to estimate parameters in the link function and variance structure simultaneously with regression coefficients. Rather than focusing on the regression coefficients, the purpose of these models is inference about the mean of the outcome as a function of a set of covariates, and various functionals of the mean function used to measure the effects of the covariates. A commonly used functional in econometrics, referred to as the marginal effect, is the partial derivative of the mean function with respect to any covariate, averaged over the empirical distribution of covariates in the model. We define an analogous parameter for discrete covariates. The proposed estimation method not only helps to identify an appropriate link function and to suggest an underlying distribution for a specific application but also serves as a robust estimator when no specific distribution for the outcome measure can be identified. Using Monte Carlo simulations, we show that the resulting parameter estimators are consistent. The method is illustrated with an analysis of inpatient expenditure data from a study of hospitalists.  相似文献   

11.
The use of generalized linear model theory in formulating and testing hypotheses which may arise in the analysis of ordinal scale organoleptic data is illustrated.  相似文献   

12.
13.
    
This article applies a simple method for settings where one has clustered data, but statistical methods are only available for independent data. We assume the statistical method provides us with a normally distributed estimate, theta, and an estimate of its variance sigma. We randomly select a data point from each cluster and apply our statistical method to this independent data. We repeat this multiple times, and use the average of the associated theta's as our estimate. An estimate of the variance is given by the average of the sigma2's minus the sample variance of the theta's. We call this procedure multiple outputation, as all \"excess\" data within each cluster is thrown out multiple times. Hoffman, Sen, and Weinberg (2001, Biometrika 88, 1121-1134) introduced this approach for generalized linear models when the cluster size is related to outcome. In this article, we demonstrate the broad applicability of the approach. Applications to angular data, p-values, vector parameters, Bayesian inference, genetics data, and random cluster sizes are discussed. In addition, asymptotic normality of estimates based on all possible outputations, as well as a finite number of outputations, is proven given weak conditions. Multiple outputation provides a simple and broadly applicable method for analyzing clustered data. It is especially suited to settings where methods for clustered data are impractical, but can also be applied generally as a quick and simple tool.  相似文献   

14.
    
The differential reinforcement of low-rate 72 seconds schedule (DRL-72) is a standard behavioral test procedure for screening potential antidepressant compounds. The protocol for the DRL-72 experiment, proposed by Evenden et al. (1993), consists of using a crossover design for the experiment and one-way ANOVA for the statistical analysis. In this paper we discuss the choice of several crossover designs for the DRL-72 experiment and propose to estimate the treatment effects using either generalized linear mixed models (GLMM) or generalized estimating equation (GEE) models for clustered binary data.  相似文献   

15.
    
  相似文献   

16.
17.
  总被引:1,自引:0,他引:1  
Albert PS  Follmann DA 《Biometrics》2000,56(3):667-677
In certain diseases, outcome is the number of morbid events over the course of follow-up. In epilepsy, e.g., daily seizure counts are often used to reflect disease severity. Follow-up of patients in clinical trials of such diseases is often subject to censoring due to patients dying or dropping out. If the sicker patients tend to be censored in such trials, estimates of the treatment effect that do not incorporate the censoring process may be misleading. We extend the shared random effects approach of Wu and Carroll (1988, Biometrics 44, 175-188) to the setting of repeated counts of events. Three strategies are developed. The first is a likelihood-based approach for jointly modeling the count and censoring processes. A shared random effect is incorporated to introduce dependence between the two processes. The second is a likelihood-based approach that conditions on the dropout times in adjusting for informative dropout. The third is a generalized estimating equations (GEE) approach, which also conditions on the dropout times but makes fewer assumptions about the distribution of the count process. Estimation procedures for each of the approaches are discussed, and the approaches are applied to data from an epilepsy clinical trial. A simulation study is also conducted to compare the various approaches. Through analyses and simulations, we demonstrate the flexibility of the likelihood-based conditional model for analyzing data from the epilepsy trial.  相似文献   

18.
    
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses.  相似文献   

19.
    
A general class of sequential models for the analysis of ordered categorical variables is developed and discussed. The models apply if the ordinal response may be subdivided into two or more meaningful sets of response categories. The parametrization explicitly makes use of this subdivision. The models furnish a linear alternative to non-linear models which incorporate a scale parameter. They are shown to be special cases of multivariate generalized linear models. Applications are discussed with the use of several examples.  相似文献   

20.
We discuss a method for simultaneously estimating the fixed parameters of a generalized linear mixed-effects model and the random-effects distribution of which no parametric assumption is made. In addition, classifying subjects into clusters according to the random regression coefficients is a natural by-product of the proposed method. An alternative approach to maximum-likelihood method, maximum-penalized-likelihood method, is used to avoid estimating “too many” clusters. Consistency and asymptotic normality properties of the estimators are presented. We also provide robust variance estimators of the fixed parameters estimators which remain consistent even in presence of misspecification. The methodology is illustrated by an application to a weight loss study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号