首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
4,5-Diaminofluorescein (DAF-2) and its membrane-permeable derivate DAF-2 diacetate are fluorescent probes that have been developed to perform real-time biological detection of nitric oxide (NO). Their use for intracellular imaging, however, has recently been seriously questioned and data using DAF-2 for extracellular NO detection at low levels, as for example released from endothelial cells, are rare. Here we show that a reliable detection of low levels of NO in biological systems by DAF-2 is possible (a) by using low DAF-2 concentrations (0.1 microM) and (b) by subtracting the DAF-2 auto-fluorescence from the measured total fluorescence. The described method allows easy real-time detection of endothelial NO formation.  相似文献   

2.
The extremely short biological half-life of endothelial-derived nitric oxide (NO) has impeded real-time measurements of NO synthesis. We used the membrane-permeable fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2 DA) to study determinants of NO synthesis in bovine aortic endothelial cells (BAECs). A step increase in shear stress (SS) from 0.3 to 3.4 dyne/cm(2) triggered an increase in DAF-2 fluorescence starting 3.0 +/- 0.5 min after the flow rise and peaking at 44.7 +/- 7.2 min. This was abolished by intracellular Ca(2+) chelation, but was unaffected by blocking extracellular Ca(2+) influx or by inhibiting SS-related changes in intracellular pH. The increase in DAF-2 fluorescence occurred significantly earlier in BAECs transfected with either superoxide dismutase (SOD) or catalase (CAT), indicating concomitant reactive oxygen species (ROS) generation by SS and "competition" between ROS- and DAF-2-NO interactions. These data provide novel insights into several NO signaling determinants and reveal that DAF-2 can assess real-time SS-stimulated NO synthesis in endothelial cells. This should facilitate the analysis of NO-signaling pathways.  相似文献   

3.
Koyama T  Kimura C  Park SJ  Oike M  Ito Y 《Life sciences》2002,72(4-5):511-520
We have investigated the relationship between Ca2+ mobilization and the cellular production of nitric oxide (NO) by using fura-2 and diaminofluorescein-2 (DAF-2), an NO-sensitive dye, in bovine aortic endothelial cells (BAEC). High concentrations of ATP (100 microM) or thapsigargin (1 micro M) depleted intracellular Ca2+ store sites with a single Ca2+ transient, and induced an increase in DAF-2 fluorescence even in Ca2+-free solution, thereby indicating that store depletion leads to NO production. The same level of increase in DAF-2 fluorescence was elicited by low concentrations of ATP (1 micro M), which induced Ca2+ oscillations but did not deplete store sites, only in the presence of extracellular Ca2+. Furthermore, inhibition of ATP (1 micro M)-induced Ca2+ entry with La3+ suppressed DAF-2 fluorescence. ATP (0.3 micro M), applied in Ca2+-free, Mn2+-containing solution induced Mn2+ entry-coupled fura-2 quenching, repeating shortly after each oscillation peak. These results indicate that NO is produced preferentially by entered Ca2+, and that Ca2+ oscillations, which are induced by low levels of stimulation, play a significant role in NO production by strongly modulating Ca2+ entry.  相似文献   

4.
4,5-Diaminofluorescein (DAF-2) is widely used for detection and imaging of NO based on its sensitivity, noncytotoxicity, and specificity. In the presence of oxygen, NO and NO-related reactive nitrogen species nitrosate 4,5-diaminofluorescein to yield the highly fluorescent DAF-2 triazole (DAF-2T). However, as reported here, the DAF-2 reaction to form a fluorescent product is not specific to NO because it reacts with dehydroascorbic acid (DHA) and ascorbic acid (AA) to generate new compounds that have fluorescence emission profiles similar to that of DAF-2T. When DHA is present, the formation of DAF-2T is attenuated because the DHA competes for DAF-2, whereas AA decreases the nitrosation of DAF-2 to a larger extent, possibly because of additional reducing activity that affects the amount of available N(2)O(3) from the NO. The reaction products of DAF-2 with DHA and AA have been characterized using capillary electrophoresis with laser-induced fluorescence detection and electrospray mass spectrometry. The reactions of DAF-2 with DHA and AA are particularly significant because DHA and AA often colocalize with nitric-oxide synthase in the central nervous, cardiovascular, and immune systems, indicating the importance of understanding this chemistry.  相似文献   

5.
Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.  相似文献   

6.
Broillet M  Randin O  Chatton J 《FEBS letters》2001,491(3):227-232
The fluorescent indicator of nitric oxide (NO), 4,5-diaminofluorescein (DAF-2), and its membrane-permeable derivative (DAF-2 diacetate) have been recently developed to perform real-time biological imaging of NO. In this study, we show that DAF-2 is strongly influenced by factors other than the concentration of NO itself. Using measurements with a fluorimeter as well as fluorescence microscopy, we found that the divalent cation concentration in the medium, as well as the incident light, strongly affects the ability of DAF-2 to detect NO. Calcium, in particular, enhanced the signal detection of NO released by NO donors by up to 200 times. With multiple and longer exposures to light, no bleaching of the dye was observed but, instead, a potentiation of the fluorescence response could be measured. While these two properties will affect the use and interpretation of the hitherto acquired data with this fluorescent compound, they may also open up new possibilities for its application.  相似文献   

7.
4,5 diaminofluorescein (DAF-2) is increasingly utilized as a fluorescent detector for nitric oxide (*NO) in cells and tissues. In oxygenated solutions, reactive nitrogen species derived from (*) NO autoxidation nitrosate DAF-2 to yield the highly fluorescent DAF-2 triazole. In the present study, we investigated the nitrosation of DAF-2 at a neutral pH by absorption and fluorescence spectroscopy using NONOates as chemical sources of (*) NO. We found that both chemically synthesized peroxynitrite and horseradish peroxidase in the presence of hydrogen peroxide (H(2)O(2)) oxidized DAF-2 to a relatively stable nonfluorescent intermediate (t(1/2) approximately 90 s). Oxidation of DAF-2 prior to the addition of the z.rad;NO donor DEA/NO resulted in an increase in fluorescence that was approximately 7-fold higher than treatment with DEA/NO alone. The increase in DAF-2 triazole formation upon oxidation of DAF-2 was confirmed by high performance liquid chromatography. Peroxynitrite generated in situ from the equimolar production of (*) NO and superoxide (O(2)(*-)) also increased the yields of DAF-2 triazole formation, which was completely inhibited when O(2)(*-) was in excess of (*) NO. We propose that DAF-2 is oxidized to a free radical intermediate that directly reacts with (*) NO, thereby bypassing the requirement for (*)NO autoxidation for the formation of DAF-2 triazole. Our findings indicate that DAF-2 fluorometric assays are quantitatively difficult to interpret in cells and in solution when oxidants and (*) NO are co-generated.  相似文献   

8.
The reagent 4,5-diaminofluorescein (DAF-2) is a widely utilized and sensitive fluorescent probe for real-time assessment of nitric oxide (NO) production. In this study we investigated the feasibility of using DAF-2 for detection of NO release from EA.hy 926 human endothelial cells stimulated with plant polyphenols. Flavonoids have recently gained much interest because of reported beneficial effects on vasodilatation, which have been ascribed to stimulation of endothelial NO production. DAF-2 shows moderate fluorescence, and because certain phenolic compounds quench fluorescence or fluoresce themselves, we utilized liquid chromatography to avoid interference. Our investigations with (+)-catechin and trans-resveratrol as test phenolic compounds revealed various previously undescribed principal methodologic pitfalls and limitations. Under assay conditions (+)-catechin displayed a highly significant increase in fluorescence intensity so that a control of test compound stability is advisable. Moreover, DAF-2 was subject to conversion to triazolofluorescein (DAF-2T) under certain assay and storage conditions; thus control of spontaneous reagent conversion is advisable. Finally, formation of DAF-2T was dose-dependently inhibited by polyphenols to a degree consistent with their free radical scavenging activity. The inhibition of DAF-2T generation seems to contradict previous reports on enhanced NO release from endothelial cells by (+)-catechin and resveratrol. Therefore, the planning of experiments involving NO measurement in biological systems and interpretation of results requires substantial scrutiny.  相似文献   

9.
An emergent approach to the detection of nitric oxide (NO) in tissues relies on the use of fluorescence probes that are activated by products of NO autoxidation. Here we explore the performance of the widely used NO probe 4,5-diaminofluorescein diacetate (DAF-2 DA) for the localization of sources of NO in rat aortic tissue, either from endogenous NO synthesis or from chemically or photolytically released NO from targets of nitrosation/nitrosylation. Of importance toward understanding the performance of this probe in tissues is the finding that, with incubation conditions commonly used in the literature (10 microM DAF-2 DA), intracellular DAF-2 accumulates to concentrations that approach the millimolar range. Whereas such high probe concentrations do not interfere with NO release or signaling, they help to clarify why DAF-2 nitrosation is possible in the presence of endogenous nitrosation scavengers (e.g., ascorbate and glutathione). The gain attained with such elevated concentrations is, however, mitigated by associated high levels of background autofluorescence from the probe. This, together with tissue autofluorescence, limits the sensitivity of the probe to low-micromolar levels of accumulated DAF-2 triazole (DAF-2 T), the activated form of the probe, which is higher than the concentrations of most endogenous nitrosation/nitrosylation products found in tissues. We further show that the compartmentalization of DAF-2 around elastic fibers further limits its potential to characterize the site of NO production at the subcellular level. Moreover, we find that reaction of DAF-2 with HgCl(2) and other commonly employed reagents is associated with spectral changes that may be misinterpreted as NO signals. Finally, UV illumination can lead to high levels of nitrosating species that interfere with NO detection from enzymatic sources. These findings indicate that while DAF-2 may still represent an important tool for the localization of NO synthesis, provided important pitfalls and limitations are taken into consideration, it is not suited for the detection of basally generated nitrosation/nitrosylation products.  相似文献   

10.
We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluorescein) were used to detect H(2)O(2) and NO, respectively. Intense electrical stimulation of muscle cells increased the intra- and extracellular DCF fluorescence by 171% and 105%, respectively, compared with control nonstimulated cells (p <.05). The addition of glutathione (GSH) or Tiron prior to electrical stimulation inhibited the intracellular DCFH oxidation (p <.05), whereas the addition of GSH-PX + GSH inhibited the extracellular DCFH oxidation (p <.05). Intense electrical stimulation also increased (p <.05) the intra- and extracellular DAF-2 fluorescence signal by 56% and 20%, respectively. The addition of N(G)-nitro-L-arginine (L-NA) completely removed the intra- and extracellular DAF-2 fluorescent signal. Our results show that H(2)O(2) and NO are formed in skeletal muscle cells during contractions and suggest that a rapid release of H(2)O(2) and NO may constitute an important defense mechanism against the formation of intracellular (*)OH and (*)ONOO. Furthermore, our data show that DCFH and DAF-2 are suitable probes for the detection of ROS and NO both intra- and extracellularly in skeletal muscle cell cultures.  相似文献   

11.
Although nitric oxide (NO) is a known modulator of cell respiration in vascular endothelium, the presence of a mitochondria-specific nitric oxide synthase (mtNOS) in these cells is still a controversial issue. We have used laser scanning confocal microscopy in combination with the NO-sensitive fluorescent dye DAF-2 to monitor changes in NO production by mitochondria of calf vascular endothelial (CPAE) cells. Cells were loaded with the membrane-permeant NO-sensitive dye 4,5-diaminofluorescein (DAF-2) diacetate and subsequently permeabilized with digitonin to remove cytosolic DAF-2 to allow measurements of NO production in mitochondria ([NO]mt). Stimulation of mitochondrial Ca2+ uptake by exposure to different cytoplasmic Ca2+ concentrations (1, 2, and 5 µM) resulted in a dose-dependent increase of NO production by mitochondria. This increase of [NO]mt was sensitive to the NOS antagonist L-N5-(1-iminoethyl)ornithine and the calmodulin antagonist calmidazolium (R-24571), demonstrating the endogenous origin of NO synthesis and its calmodulin dependence. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca2+ uniporter with ruthenium red, as well as blocking the respiratory chain with antimycin A in combination with oligomycin, inhibited mitochondrial NO production. Addition of the NO donor spermine NONOate caused a profound increase in DAF-2 fluorescence that was not affected by either of these treatments. The mitochondrial origin of the DAF-2 signals was confirmed by colocalization with the mitochondrial marker MitoTracker Red and by the observation that disruption of caveolae (where cytoplasmic NOS is localized) formation with methyl--cyclodextrin did not prevent the increase of DAF-2 fluorescence. The activation of mitochondrial calcium uptake stimulates mtNOS phosphorylation (at Ser-1177) which was prevented by FCCP. The data demonstrate that stimulation of mitochondrial Ca2+ uptake activates NO production in mitochondria of CPAE cells. This indicates the presence of a mitochondria-specific NOS that can provide a fast local modulatory effect of NO on cell respiration, membrane potential, and apoptosis. nitric oxide; nitric oxide synthase; calcium; endothelium; mitochondria  相似文献   

12.
Here we describe in more depth the previously published application of the fluorescent probe 4,5-diaminofluorescein (DAF-2) in order to reliably measure low levels of nitric oxide (NO) as released from human endothelial cells invitro. The used approach is based on the following considerations a) use low concentrations of DAF-2 (0.1 μM) in order to reduce the contribution of DAF-2 auto-fluorescence to the measured total fluorescence, and b) subtract the DAF-2 auto-fluorescence from the measured total fluorescence. The advantage of this method is the reliable quantification of NO in a biological system in the nanomolar range once thoroughly validated. Here we focus in addition to the previous publication (Leikertet al.,FEBS Lett 2001, 506:131–134) on aspects of validation procedures as well as limitations and pitfalls of this method. Published: June 2, 2003  相似文献   

13.
缺氧缺糖对培养海马神经细胞中一氧化氮和钙离子的影响   总被引:6,自引:0,他引:6  
在缺血性脑损伤中 ,NO起着重要作用。研究了原代培养的海马神经细胞中 ,缺氧缺糖对NO合成的影响。利用激光共聚焦显微镜和荧光指示剂 ,对胞内钙离子和NO的变化进行实时检测 ,并用HPLC检测了缺氧缺糖导致的谷氨酸释放。结果表明 ,缺氧缺糖引起胞内钙离子浓度升高和NO合成增加。经过 2 0min缺氧缺糖处理后 ,胞外谷氨酸的浓度比对照组高出约10 0 %。N 甲基 D 天冬氨酸 (N methyl D aspartate,NMDA)的拮抗剂MK 80 1对缺氧缺糖引起的细胞内钙离子和NO的升高有明显抑制作用。去除细胞外液的钙离子和加入钙调蛋白抑制剂三氟拉嗪都可以抑制缺氧缺糖引起的NO升高。以上结果提示 ,缺氧缺糖引起神经细胞NO合成增加 ,这种合成受谷氨酸释放 ,胞内钙离子浓度和钙调蛋白的调控。  相似文献   

14.
Diaminofluorescein-dyes (DAFs) are widely used for visualizing NO· production in biological systems. Here it was examined whether DAF-fluorescence could be evoked by other means than nitrosation. Tobacco (Nicotiana tabacum) suspension cells treated with the fungal elicitor cryptogein released compound(s) which gave a fluorescence increase in the cell-free filtrate after addition of DAF-2 or DAF-FM or DAR-4M. DAF-reactive compounds were relatively stable and identified as reaction products of H(2)O(2) plus apoplastic peroxidase (PO). CPTIO prevented formation of these products. Horseradish-peroxidase (HR-PO) plus H(2)O(2) also generated DAF-fluorescence in vitro. Using RP-HPLC with fluorescence detection, DAF derivatives were further analyzed. In filtrates from cryptogein-treated cells, fluorescence originated from two novel DAF-derivatives also obtained in vitro with DAF-2+HR-PO+H(2)O(2). DAF-2T was only detected when an NO donor (DEA-NO) was present. Using high resolution mass spectrometry, the two above-described novel DAF-reaction products were tentatively identified as dimers. In cells preloaded with DAF-2 DA and incubated with or without cryptogein, DAF-fluorescence originated from a complex pattern of multiple products different from those obtained in vitro. One specific peak was responsive to exogenous H(2)O(2), and another, minor peak eluted at or close to DAF-2T. Thus, in contrast to the prevailing opinion, DAF-2 can be enzymatically converted into a variety of highly fluorescing derivatives, both inside and outside cells, of which none (outside) or only a minor part (inside) appeared NO· dependent. Accordingly, DAF-fluorescence and its prevention by cPTIO do not necessarily indicate NO· production.  相似文献   

15.
Berkels R  Dachs C  Roesen R  Klaus W 《Cell calcium》2000,27(5):281-286
Different methods to measure the unstable radical nitric oxide (NO) have been established. We are going to present a new method to measure intracellular calcium and NO simultaneously in endothelial cells. A new fluorescent dye (DAF-2) has been developed recently which binds NO resulting in an enhanced fluorescence. We loaded porcine aortic endothelial cells with Fura-2, a fluorescent dye commonly used to measure intracellular calcium, and DAF-2 simultaneously (cell permeable dyes). Using excitation wavelengths of lambda 340 nm (Fura-2) and lambda 485 nm (DAF-2) we could show that thrombin induces an intracellular calcium increase and simultaneously a NO formation in endothelial cells which could be blocked by a NO synthase inhibitor. This new method of a simultaneous measurement of intracellular calcium and NO provides the possibility to follow intracellular calcium and NO distributions online, and is sensitive enough to monitor changes of NO formed by the constitutive endothelial NO-synthase.  相似文献   

16.
We examined the effects of acute glucose overload (pretreatment for 3 h with 23 mM D-glucose) on the cellular productivity of nitric oxide (NO) in bovine aortic endothelial cells (BAEC). We had previously reported (Kimura C, Oike M, and Ito Y. Circ Res, 82: 677-685, 1998) that glucose overload impairs Ca(2+) mobilization due to an accumulation of superoxide anions (O(2)(-)) in BAEC. In control cells, ATP induced an increase in NO production, assessed by diaminofluorescein 2 (DAF-2), an NO-sensitive fluorescent dye, mainly due to Ca(2+) entry. In contrast, ATP-induced increase in DAF-2 fluorescence was impaired by glucose overload, which was restored by superoxide dismutase, but not by catalase or deferoxamine. Furthermore, pyrogallol, an O(2)(-) donor, also attenuated ATP-induced increase in DAF-2 fluorescence. In contrast, a nonspecific intracellular Ca(2+) concentration increase induced by the Ca(2+) ionophore A-23187, which depletes the intracellular store sites, elevated DAF-2 fluorescence in both control and high D-glucose-treated cells in Ca(2+)-free solution. These results indicate that glucose overload impairs NO production by the O(2)(-)-mediated attenuation of Ca(2+) entry.  相似文献   

17.
We have analyzed the synthesis of nitric oxide in the terminal abdominal ganglion of the crayfish using the fluorescent probe 4,5-Diaminofluoroscein diacetate, DAF-2 DA. Following DAF-2 loading, ganglia showed cell-specific patterns of fluorescence in which the occurrence of strongly fluorescent cell bodies was highest in specific anterior, central, and posterior regions. We found that preincubation with the nitric oxide synthase (NOS) inhibitor L-NAME prevented much of the initial development of DAF-2 fluorescence, whereas the inactive isomer D-NAME had no effect. Washout of preincubated L-NAME caused increased cell-specific fluorescence due to endogenous NOS activity. Application of the NOS substrate L-arginine also resulted in an increase of DAF-2 fluorescence in a cell-specific manner. We bath applied the NO donor SNAP to increase exogenous NO levels which resulted in DAF-2 fluorescence increases in most cells. We therefore presume that the cell-specific pattern of DAF-2 fluorescence indicates the distribution of neurones actively synthesizing NO. The similarity between the DAF-2 staining pattern and previously published studies of NOS activity are discussed.  相似文献   

18.
The mechanism by which mechanical stress induces nitric oxide (NO) synthesis in endothelium is still controversial. Hypotonic stress (HTS, -20%) induced ATP release, which evoked Ca(2+) transients in bovine aortic endothelial cells (BAEC). HTS also induced NO synthesis, assessed by DAF-2 fluorescence, which was suppressed by inhibiting endogenous ATP-induced Ca(2+) transients with suramin or neomycin. Exogenously applied ATP mimicked these responses. Pretreatment with wortmannin did not affect DAF-2 fluorescence, suggesting that Akt phosphorylation was not involved in HTS-induced NO synthesis. These results indicate that endogenous ATP plays a central role in HTS-induced NO synthesis in BAEC.  相似文献   

19.
We have previously demonstrated that platelet-activating factor (PAF)-induced increases in microvessel permeability were associated with endothelial gap formation and that the magnitude of peak endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and nitric oxide (NO) production at the single vessel level determines the degree of the permeability increase. This study aimed to examine whether the magnitudes of PAF-induced peak endothelial [Ca(2+)](i), NO production, and gap formation are correlated at the individual endothelial cell level in intact rat mesenteric venules. Endothelial gaps were quantified by the accumulation of fluorescent microspheres at endothelial clefts using confocal imaging. Endothelial [Ca(2+)](i) was measured on fura-2- or fluo-4-loaded vessels, and 4,5-diaminofluorescein (DAF-2) was used for NO measurements. The results showed that increases in endothelial [Ca(2+)](i), NO production, and gap formation occurred in all endothelial cells when vessels were exposed to PAF but manifested a spatial heterogeneity in magnitudes among cells in each vessel. PAF-induced peak endothelial [Ca(2+)](i) preceded the peak NO production by 0.6 min at the cellular level, and the magnitudes of NO production and gap formation linearly correlated with that of the peak endothelial [Ca(2+)](i) in each cell, suggesting that the initial levels of endothelial [Ca(2+)](i) determine downstream NO production and gap formation. These results provide direct evidence from intact venules that inflammatory mediator-induced increases in microvessel permeability are associated with the generalized formation of endothelial gaps around all endothelial cells. The spatial differences in the molecular signaling that were initiated by the heterogeneous endothelial Ca(2+) response contribute to the heterogeneity in permeability increases along the microvessel wall during inflammation.  相似文献   

20.
4,5-Diaminofluorescein (DAF-2) is a newly developed indicator of nitric oxide (NO). Two amino groups of DAF-2 are oxidized by NO. We investigated the effects of reducers on the NO-induced oxidation of DAF-2. NOC-5 (0.1-10 microM), a NO-donor, concentration-dependently elicited fluorescence with 10 microM DAF-2. The rate of the fluorescence reaction was dependent on the width of the excitation band path. The presence of catecholamines (1 microM), but not tyrosine or phenylephrine, attenuated the fluorescence induced by NOC-5. Ascorbate and other reducers like dithiothreitol, 2-mercaptoethanol, or glutathione (all 1 mM) abolished the fluorescence. These results suggest that reducers attenuate the NO-induced fluorescence of DAF-2 mainly through an anti-oxidative action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号