首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Pollen-collecting bumble bees (Bombus spp.) detect differences between individual flowers in pollen availability and alter their behavior to capitalize on rewarding flowers. Specific responses by bees to increased pollen availability included: longer visits to flowers; visits to more flowers within an inflorescence, including an increased frequency of revisits; an increased likelihood of grooming while the bee flow between flowers within the inflorescence; and more protracted inter-flower flights, probably because of longer grooming bouts. The particular suite of responses that a bee adopted depended on the pollen-dispensing mechanism of the plant species involved. Bees buzzed previously-unvisited Dode-catheon flowers longer than empty flowers. In contrast, pollen availability did not significantly affect the duration of visits to Lupinus flowers, which control the amount of pollen that can be removed during a single visit. Simulation results indicate that the observed movement patterns of bumble bees on Lupinus inflorescences would return the most pollen per unit of expended energy. The increased foraging efficiency resulting from facultative responses by bees to variation in pollen availability, especially changes in the frequency and intensity of grooming, could correspondingly decrease pollen dispersal between plants.  相似文献   

2.
BACKGROUND AND AIMS: Most plant species are visited by a diversity of floral visitors. Pollen transfer of the four most common pollinating bee species and one nectar-robbing bee of the distylous plant Gelsemium sempervirens were compared. METHODS: Naturally occurring pollen loads carried by the common floral visitor species of G. sempervirens were compared. In addition, dyed pollen donor flowers and sequences of four emasculated recipient flowers in field cages were used to estimate pollen transfer, and the utility of fluorescent dye powder as an analogue for pollen transfer was determined. KEY RESULTS: Xylocopa virginica, Osmia lignaria and Habropoda laboriosa carried the most G. sempervirens pollen on their bodies, followed by Bombus bimaculatus and Apis mellifera. However, B. bimaculatus, O. lignaria and H. laboriosa transferred significantly more pollen than A. mellifera. Nectar-robbing X. virginica transferred the least pollen, even when visiting legitimately. Dye particles were strongly correlated with pollen grains on a stigma, and therefore provide a good analogue for pollen in this system. The ratio of pollen : dye across stigmas was not affected by bee species or interactions between bee species and floral morphology. However, dye transfer was more sensitive than pollen transfer to differences in floral morphology. CONCLUSIONS: The results from this study add to a growing body of literature highlighting that floral visitors vary in pollination effectiveness, and that visitors carrying the most pollen on their bodies may not always be the most efficient at depositing pollen on stigmas. Understanding the magnitude of variability in pollinator quality is one important factor for predicting how different pollinator taxa may influence the evolution of floral traits.  相似文献   

3.
The foraging behavior of bumble bees (Bombus impatiens Cresson) was examined as a function of feeder location containing sugar solution in a commercial tomato greenhouse in Manotick, Ontario, Canada. The feeders were located within the nest-box (fed-close) or placed 1.5 m away (fed-far) and the placement of the two types of colonies was counterbalanced over time. No effect of feeder location was found in colony activity levels or in pollen load size. A foraging trade-off between sugar solution and pollen collection, however, was found: the proportion of foraging trips in which pollen was brought back was significantly reduced for fed-far colonies, which contrasts with our laboratory study in which the opposite effect was found. We interpret our findings as possibly reflecting a limitation in pollen supply in the greenhouse: an already possibly strained ability to find and bring back pollen to the colony was accentuated by increasing the task demands of collecting sugar solution.  相似文献   

4.
Effects of recent experience on foraging decisions by bumble bees   总被引:2,自引:0,他引:2  
The temporal and spatial scales employed by foraging bees in sampling their environment and making foraging decisions should depend both on the limits of bumble bee memory and on the spatial and temporal pattern of rewards in the habitat. We analyzed data from previous experiments to determine how recent foraging experience by bumble bees affects their flight distances to subsequent flowers. A single visit to a flower as sufficient to affect the flight distance to the next flower. However, longer sequences of two or three visits had an additional effect on the subsequent flight distance of individual foragers. This suggests that bumble bees can integrate information from at least three flowers for making a subsequent foraging decision. The existence of memory for floral characteristics at least at this scale may have significance for floral selection in natural environments.  相似文献   

5.
The collection of pollen by bees   总被引:4,自引:0,他引:4  
Bees require pollen for their reproduction and pollen comprises the basic larval food for bees. Most bees acquire pollen passively during flower visitation, but female bees may also collect pollen actively with the aid of various structural and behavioral adaptations. Most bees have evolved adaptations to concentrate pollen into discrete loads and transport pollen back to their nests. The various structural and behavioral adaptations of female bees for acquiring and transporting pollen are the basis of this review.  相似文献   

6.
Currently, there is concern about declining bee populations and the sustainability of pollination services. One potential threat to bees is the unintended impact of systemic insecticides, which are ingested by bees in the nectar and pollen from flowers of treated crops. To establish whether imidacloprid, a systemic neonicotinoid and insect neurotoxin, harms individual bees when ingested at environmentally realistic levels, we exposed adult worker bumble bees, Bombus terrestris L. (Hymenoptera: Apidae), and honey bees, Apis mellifera L. (Hymenoptera: Apidae), to dietary imidacloprid in feeder syrup at dosages between 0.08 and 125 μg l?1. Honey bees showed no response to dietary imidacloprid on any variable that we measured (feeding, locomotion and longevity). In contrast, bumble bees progressively developed over time a dose-dependent reduction in feeding rate with declines of 10–30% in the environmentally relevant range of up to 10 μg l?1, but neither their locomotory activity nor longevity varied with diet. To explain their differential sensitivity, we speculate that honey bees are better pre-adapted than bumble bees to feed on nectars containing synthetic alkaloids, such as imidacloprid, by virtue of their ancestral adaptation to tropical nectars in which natural alkaloids are prevalent. We emphasise that our study does not suggest that honey bee colonies are invulnerable to dietary imidacloprid under field conditions, but our findings do raise new concern about the impact of agricultural neonicotinoids on wild bumble bee populations.  相似文献   

7.
8.
The innate preferences of inexperienced bumble bees, Bombus terrestris, for floral colour stimuli were studied using artificial flowers. The artificial flowers provided a colour pattern and consisted of a star-shaped corolla and of central colour patches similar to the nectar guide of natural flowers. The innate choice behaviour was assessed in terms of the number of approach flights from some distance towards the artificial flowers and the percentage of approach flights terminating in antennal contact with the floral guide. The colours of the floral guide, the corolla and the background were varied. It was shown that the innate flower colour preference in bumble bees has two components. 1. The frequency of approaches from a distance is correlated with the colour difference between the corolla and the background against which it is presented. If the corolla colour was constant but its background colour varied, the relative attractiveness of the corolla increased with its colour difference to the background. The colour difference assessment underlying this behaviour on a perceptual basis can be attained by means of colour opponent coding, a system well-established in Hymenoptera. 2. The frequency of antennal contacts with the floral guides relative to that of approach flights cannot be accounted for by colour opponent coding alone. Whether the approach flights are interrupted, or whether they end in an antennal contact with the nectar guide is strongly dependent on the direction (sign) of the colour difference, not only its magnitude. The choice behaviour requires a unique perceptual dimension, possibly that of colour saturation or that of hue perception comparable to components of colour perception in humans.  相似文献   

9.
Electrophoresis of tissue extracts has shown the presence of multiple electrophoretic forms of glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) in many Hymenoptera. The patterns are most complex in the two bumblebee genera, Bombus and Psithyrus, where from five to six variants are observed.Homogeneous preparations of the major flight muscle variant of glycerol 3-phosphate dehydrogenase have been isolated from thoraces of three bumblebee species and of yellow jacket. The amino acid compositions of these four enzymes plus that from the honeybee have been determined and compared.The Michaelis constant for dihydroxyacetone phosphate was measured for the honeybee, bumblebee, and yellow jacket enzymes. Differences were observed between species but not between bumblebee isozymes.B. nevadensis glycerol 3-phosphate dehydrogenase binds reversibly to both B. nevadensis and honeybee actin. The alar-muscular variants bind more strongly than the omniregional variants.  相似文献   

10.
Summary Using removal experiments and concurrent measurement of resource levels, evidence was obtained for exploitation competition between Ruby-throated hummingbirds and two bumble bee species (Bombus fervidus and B. vagans) foraging for nectar on Impatiens biflora.When all three species were active, flower visitors showed a complex pattern of resource partitioning involving both diel and spatial changes. Hummingbirds foraged almost exclusively from the outermost exposed flowers on plants from which they drained nectar levels beyond the reach of bees over most of the day. In contrast the longtongued bee species (B. fervidus), and the shorter-tongued B. vagans, displayed a preference for the innermost flowers on plants which were protected from hummingbird visitation by surrounding vegetation. The two Bombus spp. began foraging at different times during the day: B. vagans were most active in early morning but were replaced by B. fervidus later in the day.When hummingbirds were rare, only B. fervidus showed evidence of competitive release: an increase in the number of foragers and a broadening of flower choice to include more outer flowers. Workers of B. vagans showed a similar response to temporary removal of B. fervidus and also extended their foraging over the entire day. These responses were consistent with changes in the availability of nectar to different species.Removal experiments demonstrated that individuals of one species can be largely excluded from access to nectar resources as a direct result of exploitation of nectar by foragers of other species with longer tongues. Thus in this system interspecific exploitation is an important mechanism involved in resource partitioning.  相似文献   

11.
Abstract The type female of Bombus folsomi (Frison) is redescribed and synomymized with B.ephippiatus Say. It is concluded that the putative type locality of B.folsomi , Mt Kinabalu in Borneo, is in error and that the genus appears to be absent from Borneo. This lends support to the hypothesis that bumble bees immigrated to the Philippines by an unusual northern route through Taiwan. More rigorous testing of this idea will require further cladistic analysis of the genus Bombus .  相似文献   

12.
Highly variable microsatellites enabled a precise assessment of the number of queen matings in the colonies of five bumble bee species. Fifteen of the sixteen microsatellites initially cloned from B. terrestris had flanking regions similar enough to allow PCR amplification on the other Bombus species analysed. The microsatellites selected for intracolony study (four per species) were characterized by a high heterozygosity (0.58–0.93) and a large number of alleles (3–18) in the local populations from which the colonies originated. A single male appeared to have inseminated the queens in the colonies of four species, B. terrestris, B. lucorum, B. lapidarius and B. pratorum, which belong to three subgenera, whereas two of the three analysed colonies of B. hypnorum were polyandrous (minimum number of two and four patrilines, respectively).  相似文献   

13.
What rules determine whether bumble bees continue exploitingplants of the species just visited or switch to another species?To tackle this question, we recorded handling times and flighttimes from bees foraging in a natural meadow containing fiveplant species. Inter- and intra-specific plant distances werequantified. The bee-subjective colors of the five species weredetermined; two of these species had similar colors and structures,while three species were distinct from all others. The followingrules were identified: (1) The decision to switch species wascorrelated with previous flower handling time, which we assumeis a function of the reward amount received at the flower. Aftershort handling times, the probability of switching to anotherspecies increased, whereas it decreased after long handlingtimes. This difference became even greater if the bee had hada run of several short or several long handling times. (2) Constantflights (those between flowers of the same species) and transitionflights (those between flowers of different species) followedstereotyped temporal patterns independent of the distances betweenflowers. Constant flights within five plant species consistentlyhad median durations of about 2 seconds, whereas median transitiontimes between species took 3–6 seconds. (3) This temporalrule broke down, however, if the flowers of two species hadsimilar colors, in which case transition flights had equal dynamicsas constant flights. (4) Bees switched more frequently fromrare than from common species but even more frequently betweensimilar species. We conclude that the bees' choices were determinedby a set of rules that guided them to stay with the currentplant species as long as flowers were rewarding and availablewithin close distance but to switch to another species if flowersoffered low rewards or were not encountered at close range  相似文献   

14.
Summary Fluid viscosity only affected ingestion rates of bumble bees (Bombus) for solutions greater than 35–40% sucrose (mass of solute per mass of solution). This contrasts with previously published models based on fluid dynamics which predicted continuous depression of ingestion rates with increasing viscosity. Individual bees maintained constant lapping rates regardless of sucrose concentration (up to at least 70%). The decline in ingestion rates at higher concentrations apparently resulted from the tongue not contacting liquid long enough to become saturated due to reduced capillary flow. Increasing flower depth similarly decreased the volume of liquid ingested per lap, and did not affect lapping rate. Morphologically dissimilar bees drank at different rates because glossa length affects lapping rate and volume ingested per lap, and body mass affects lapping rate. An additional species-specific component to lapping rate also influenced ingestion rates. Deviations from a regression model derived to explain ingestion rates as a function of glossa length, body mass, flower depth and liquid viscosity suggest mechanistic and behavioralaspects to flower probing time. Because of the relation between ingestion rate and liquid viscosity, the sucrose concentration maximizing a bee's rate of net energy uptake should lie between 50–65%, depending primarily on specific conditions of nectar volume, inflorescence size and flight time between inflorescences.  相似文献   

15.
We analyzed the temporal structure of visitation by bumble beeworkers to a single Penstemon strictus plant growing in an arrayof conspecifics. When tested against a null distribution usinga randomization model, the observed pattern of arrivals forthe whole group of bees was random, but departures were clusteredin time. Certain individuals visited the plant repeatedly andfrequently throughout the day. These showed significantly regulararrival and departure schedules, which were likely producedby traplining. We explored whether these more frequent and regularforagers gained a higher reward than random or incidental plantvisitors. Using an analytical model, Possingham predicted thata dominating forager that visited a simple, renewing resourcein a regular pattern would garner higher and less variable rewardsthan random visitors. Inspired by these results, but interestedin plant-level visitation, we constructed a simulation modelof resource dynamics for a multiflowered plant with high visitation.The model incorporates the observed visitation schedules ofall bees and independent reward dynamics for each flower onthe plant. We calculated the rewards that observed bees wouldhave collected given a range of resource-renewal parameters.More frequent visitors did not return to the plant when whole-plantresource levels were higher, but these visitors did get greaterrewards. Their increased reward resulted from greater foragingefficiency, primarily through selecting (on average) more rewardingflowers than those selected by less frequent, random visitors.  相似文献   

16.
Animals exploiting their familiar food items often avoid spatio-temporal aggregation with others by avoiding scents, less rewarding areas or visual contacts, thereby minimizing competition or interference when resources are replenished slowly in patches. When animals are searching or assessing available food sources, however, they may benefit from reducing sampling costs by following others at food sites. Therefore, animals may adjust their responses to others depending on their familiarity with foraging situations. Here, we conducted field experiments to test whether nectar-collecting bumble bees make this adjustment. We allowed free-foraging bees to choose between two inflorescences, one occupied by a conspecific bee and another unoccupied. When bees were presented with flowers of a familiar type, they avoided occupied inflorescences. In contrast, bees visited an occupied inflorescence when the flower type was unfamiliar. To our knowledge, this is the first report suggesting that animals adjust their responses to feeding conspecifics depending on their familiarity with food sources. Such behavioural flexibilities should allow foragers to both explore and exploit their environments efficiently.  相似文献   

17.
The colony initiation rates of Bombus hypocrita (a native Japanese bumblebee) and Bombus terrestris (a European species) foundresses were compared after 4 weeks of exposure to B. terrestris cocoons. The B. terrestris cocoons, when replaced weekly, were effective for inducing oviposition by foundresses of both species. There were no significant differences in the colony initiation rates of B. terrestris and B. hypocrita, either with the control treatment or with the cocoons. The cocoon method was also tested for five species and two subspecies of native Japanese bumblebees. The colony initiation rate was higher for foundresses of the subgenus Bombus s. str. than for foundresses of the subgenera Pyrobombus, Diversobombus, and Thoracobombus. When replaced weekly, the cocoons of B. terrestris are effective inducers of colony foundation in three Japanese native species, namely B. ignitus, B. hypocrita hypocrita, and B. h. sapporoensis.  相似文献   

18.
Foraging on resources that are fixed in space but that replenishover time, such as floral nectar and pollen, presents animalswith the problem of selecting a foraging route. What can flowervisitors such as bees do to optimize their foraging routes,that is, reduce return time or route distance? Some repeatedlyvisit a set of plants in a significantly predictable sequence(so-called "trapline foraging"), which may also enhance theirforaging efficiency. A moderate level of optimization and repetitionof foraging routes can be reached by following simple movementrules for choosing the distances and turning angles of successiveflights, without the use of spatial memory. If pollinators canlearn the locations of patches and choose among possible foragingroutes or paths, however, even better performance may be achieved.We tested whether and how bumble bees can optimize and repeattheir foraging routes in laboratory experiments with artificialflowers that secreted nectar at a constant rate. With increasingexperience, foraging routes of bees became more repeatable andefficient than expected from a combination of simple movementrules between successive flowers. We suggest that trapline foragingis a more sophisticated pattern of spatial use than searchingand is based on memory. On the other hand, certain spatial configurationsof flowers hampered optimization by the bees; bees preferredto choose short distances over straight moves and showed littleplasticity in this regard. Developing an efficient trapline,therefore, may require prior selection of a set of plants withan appropriate spatial configuration.  相似文献   

19.
20.
We examined the significance of retaining color-changed flowers in pollination success of Weigela middendorffiana through a single visit of bumble bees. Inner parts of flowers changed color with age from yellow to red. In an investigation of the mating system, duration of each color phase, reproductive ability of each of the color-phase flowers, and the effects of color-changed flowers on bumble bee behavior (1) flowers of this species were self-incompatible, (2) color-changed flowers provided little reward to pollinators and little residual reproductive ability, (3) the timing of floral color change was delayed with the progress of flowering season within individual plants, while the duration of the red phase shortened with the progress of flowering season, and (4) red-phase flowers did not attract bumble bees at a distance but did contribute to reducing the number of successive flower visits during a single stay within the plants. Red-phase flowers seemed to indicate the low reward level of old flowers and functioned as a cue to discourage pollinators from staying longer on the same plant. Our results predict that the retention of color-changed flowers without sexual function can enhance the pollination success of a whole plant through male function by reducing successive flower visits during a single stay of pollinators, i.e., geitonogamous pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号