首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the February 21 issue of Cell, demonstrate that asymmetrical loading of Kar9 onto astral microtubules (MTs) emanating from the bud-ward-directed spindle pole ensures delivery of this spindle pole to the bud. Kar9 mediates alignment of the spindle with the cell polarity axis through a Myo2-dependent mechanism that reorients astral MTs toward the bud.  相似文献   

2.
In many animal species the meiosis I spindle in oocytes is anastral and lacks centrosomes. Previous studies of Drosophila oocytes failed to detect the native form of the germline-specific γ-tubulin (γTub37C) in meiosis I spindles, and genetic studies have yielded conflicting data regarding the role of γTub37C in the formation of bipolar spindles at meiosis I. Our examination of living and fixed oocytes carrying either a null allele or strong missense mutation in the γtub37C gene demonstrates a role for γTub37C in the positioning of the oocyte nucleus during late prophase, as well as in the formation and maintenance of bipolar spindles in Drosophila oocytes. Prometaphase I spindles in γtub37C mutant oocytes showed wide, non-tapered spindle poles and disrupted positioning. Additionally, chromosomes failed to align properly on the spindle and showed morphological defects. The kinetochores failed to properly co-orient and often lacked proper attachments to the microtubule bundles, suggesting that γTub37C is required to stabilize kinetochore microtubule attachments in anastral spindles. Although spindle bipolarity was sometimes achieved by metaphase I in both γtub37C mutants, the resulting chromosome masses displayed highly disrupted chromosome alignment. Therefore, our data conclusively demonstrate a role for γTub37C in both the formation of the anastral meiosis I spindle and in the proper attachment of kinetochore microtubules. Finally, multispectral imaging demonstrates the presences of native γTub37C along the length of wild-type meiosis I spindles.  相似文献   

3.
Prereplication complexes (pre-RCs) define potential origins of DNA replication and allow the recruitment of the replicative DNA helicase MCM2-7. Here, we characterize MCM9, a member of the MCM2-8 family. We demonstrate that MCM9 binds to chromatin in an ORC-dependent manner and is required for the recruitment of the MCM2-7 helicase onto chromatin. Its depletion leads to a block in pre-RC assembly, as well as DNA replication inhibition. We show that MCM9 forms a stable complex with the licensing factor Cdt1, preventing an excess of geminin on chromatin during the licensing reaction. Our data suggest that MCM9 is an essential activating linker between Cdt1 and the MCM2-7 complex, required for loading the MCM2-7 helicase onto DNA replication origins. Thus, Cdt1, with its two opposing regulatory binding factors MCM9 and geminin, appears to be a major platform on the pre-RC to integrate cell-cycle signals.  相似文献   

4.
The actin cytoskeleton of budding yeast contains an extensive set of actin-associated proteins with conserved mammalian counterparts. For more than 20 years, yeast has been used as a model organism to dissect the in vivo functions of these factors, revealing an intricate web of genetic interactions in the cell. Now, a surge of biochemical reports is defining the physical interactions and activities of these proteins and providing mechanistic insights into their cellular roles. The emerging view is that most actin-associated proteins do not act alone but, rather, associate to form modular protein complexes that regulate actin assembly and organization.  相似文献   

5.
Many asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis. Here, we show that beyond perturbing Kar9 distribution, activation of the spindle assembly checkpoint (SAC) randomizes SPB inheritance. Inactivation of the B-type cyclin Clb5 led to a SAC-dependent defect in Kar9 orientation and SPB segregation. Furthermore, unlike the Clb4-dependent pathway, the Clb5- and SAC-dependent pathways functioned genetically upstream of the mitotic exit network (MEN) in SPB specification and Kar9-dependent SPB inheritance. Together, our study indicates that Clb5 functions in spindle assembly and that the SAC controls the specification and inheritance of yeast SPBs through inhibition of the MEN.  相似文献   

6.
p13(suc1) (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G(1) cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G(1) cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G(1) cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G(1) cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G(1) phase in budding yeast.  相似文献   

7.
Many asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis. Here, we show that beyond perturbing Kar9 distribution, activation of the spindle assembly checkpoint (SAC) randomizes SPB inheritance. Inactivation of the B-type cyclin Clb5 led to a SAC-dependent defect in Kar9 orientation and SPB segregation. Furthermore, unlike the Clb4-dependent pathway, the Clb5- and SAC-dependent pathways functioned genetically upstream of the mitotic exit network (MEN) in SPB specification and Kar9-dependent SPB inheritance. Together, our study indicates that Clb5 functions in spindle assembly and that the SAC controls the specification and inheritance of yeast SPBs through inhibition of the MEN.  相似文献   

8.
The functions of Beclin‐1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K‐III complex. Here, we describe a new role for Beclin‐1 in mitotic chromosome congression that is independent of the PI3K‐III complex and its role in autophagy. Beclin‐1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP‐E, CENP‐F and ZW10, and, consequently, the cells present severe problems in chromosome congression. Beclin‐1 associates with kinetochore microtubules and forms discrete foci near the kinetochores of attached chromosomes. We show that Beclin‐1 interacts directly with Zwint‐1—a component of the KMN (KNL‐1/Mis12/Ndc80) complex—which is essential for kinetochore–microtubule interactions. This suggests that Beclin‐1 acts downstream of the KMN complex to influence the recruitment of outer kinetochore proteins and promotes accurate kinetochore anchoring to the spindle during mitosis.  相似文献   

9.
The budding yeast shmoo tip is a model system for analyzing mechanisms coupling force production to microtubule plus-end polymerization/depolymerization. Dynamic plus ends of astral microtubules interact with the shmoo tip in mating yeast cells, positioning nuclei for karyogamy. We have used live-cell imaging of GFP fusions to identify proteins that couple dynamic microtubule plus ends to the shmoo tip. We find that Kar3p, a minus end-directed kinesin motor protein, is required, whereas the other cytoplasmic motors, dynein and the kinesins Kip2p and Kip3p, are not. In the absence of Kar3p, attached microtubule plus ends released from the shmoo tip when they switched to depolymerization. Furthermore, microtubules in cells expressing kar3-1, a mutant that results in rigor binding to microtubules [2], were stabilized specifically at shmoo tips. Imaging of Kar3p-GFP during mating revealed that fluorescence at the shmoo tip increased during periods of microtubule depolymerization. These data are the first to localize the activity of a minus end-directed kinesin at the plus ends of microtubules. We propose a model in which Kar3p couples depolymerizing microtubule plus ends to the cell cortex and the Bim1p-Kar9p protein complex maintains attachment during microtubule polymerization. In support of this model, analysis of Bim1p-GFP at the shmoo tip results in a localization pattern complementary to that of Kar3p-GFP.  相似文献   

10.
Liu H  Jin F  Liang F  Tian X  Wang Y 《Genetics》2011,187(2):397-407
In budding yeast Saccharomyces cerevisiae, kinetochores are attached by microtubules during most of the cell cycle, but the duplication of centromeric DNA disassembles kinetochores, which results in a brief dissociation of chromosomes from microtubules. Kinetochore assembly is delayed in the presence of hydroxyurea, a DNA synthesis inhibitor, presumably due to the longer time required for centromeric DNA duplication. Some kinetochore mutants are sensitive to stressful DNA replication as these kinetochore proteins become essential for the establishment of the kinetochore-microtubule interaction after treatment with hydroxyurea. To identify more genes required for the efficient kinetochore-microtubule interaction under stressful DNA replication conditions, we carried out a genome-wide screen for yeast mutants sensitive to hydroxyurea. From this screen, cik1 and kar3 mutants were isolated. Kar3 is the minus-end-directed motor protein; Cik1 binds to Kar3 and is required for its motor function. After exposure to hydroxyurea, cik1 and kar3 mutant cells exhibit normal DNA synthesis kinetics, but they display a significant anaphase entry delay. Our results indicate that cik1 cells exhibit a defect in the establishment of chromosome bipolar attachment in the presence of hydroxyurea. Since Kar3 has been shown to drive the poleward chromosome movement along microtubules, our data support the possibility that this chromosome movement promotes chromosome bipolar attachment after stressful DNA replication.  相似文献   

11.
Ran GTPase is involved in several aspects of nuclear structure and function, including nucleocytoplasmic transport and nuclear envelope formation. Experiments using Xenopus egg extracts have shown that generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 also plays roles in mitotic spindle assembly. Here, we have examined the localization and function of RCC1 in mitotic human cells. We show that RCC1, either the endogenous protein or that expressed as a fusion with green fluorescent protein (GFP), is localized predominantly to chromosomes in mitotic cells. This localization requires an N-terminal lysine-rich region that also contains a nuclear localization signal and is enhanced by interaction with Ran. Either mislocalization of GFP-RCC1 by removal of the N-terminal region or the expression of dominant Ran mutants that perturb the GTP/GDP cycle causes defects in mitotic spindle morphology, including misalignment of chromosomes and abnormal numbers of spindle poles. These results indicate that the generation of Ran-GTP in the vicinity of chromosomes by RCC1 is important for the fidelity of mitotic spindle assembly in human cells. Defects in this system may result in abnormal chromosome segregation and genomic instability, which are characteristic of many cancer cells.  相似文献   

12.
BACKGROUND: Two genetic 'pathways' contribute to the fidelity of nuclear segregation during the process of budding in the yeast Saccharomyces cerevisiae. An early pathway, involving Kar9p and other proteins, orients the mitotic spindle along the mother-bud axis. Upon the onset of anaphase, cytoplasmic dynein provides the motive force for nuclear movement into the bud. Loss of either pathway results in nuclear-migration defects; loss of both is lethal. Here, to visualize the functional steps leading to correct spindle orientation along the mother-bud axis, we imaged live yeast cells expressing Kar9p and dynein as green fluorescent protein fusions. RESULTS: Transport of Kar9p into the bud was found to require the myosin Myo2p. Kar9p interacted with microtubules through the microtubule-binding protein Bim1p and facilitated microtubule penetration into the bud. Once microtubules entered the bud, Kar9p provided a platform for microtubule capture at the bud cortex. Kar9p was also observed at sites of microtubule shortening in the bud, suggesting that Kar9p couples microtubule shortening to nuclear migration. CONCLUSIONS: Thus, Kar9p provides a key link between the actin cytoskeleton and microtubules early in the cell cycle. A cooperative mechanism between Kar9p and Myo2p facilitates the pre-anaphase orientation of the spindle. Later, Kar9p couples microtubule disassembly with nuclear migration.  相似文献   

13.
The precise temporal and spatial concentration of microtubule-associated proteins (MAPs) within the cell is fundamental to ensure chromosome segregation and correct spindle positioning. MAPs form an intricate web of interactions among each other and compete for binding sites on microtubules. Therefore, when assessing cellular phenotypes upon MAP up- or downregulation, it is important to consider the protein interaction network between individual MAPs. Here, we show that changes in the amounts of the spindle positioning factor Kar9 specifically affect the distribution of yeast EB1 on spindle microtubules, without influencing other microtubule-associated interacting partners of Kar9, i.e. yeast XMAP215 and CLIP-170. Alterations in the distribution of yeast EB1 explain chromosome segregation defects upon knockout, overexpression or stabilization of Kar9 and provide an example for non-linear effects on MAP behavior after perturbation of their equilibrium.  相似文献   

14.
Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.  相似文献   

15.
Recent work with bacteria and eukaryotes has shown that GTPases play important roles in ribosome assembly. Here we show that the essential GTPase YqeH is required for proper 70S ribosome formation and 30S subunit assembly/stability in Bacillus subtilis.  相似文献   

16.
Kinetochores are composed of a large number of protein complexes that must be properly assembled on DNA to attach chromosomes to the mitotic spindle and to coordinate their segregation with the advance of the cell cycle. CBF3 is an inner kinetochore complex in the budding yeast Saccharomyces cerevisiae that nucleates the recruitment of all other kinetochore proteins to centromeric DNA. Skp1p and Sgt1p act through the core CBF3 subunit, Ctf13p, and are required for CBF3 to associate with centromeric DNA. To investigate the contribution of Skp1p and Sgt1p to CBF3 function, we have used a combination of in vitro binding assays and a unique protocol for synchronizing the assembly of kinetochores in cells. We have found that the interaction between Skp1p and Sgt1p is critical for the assembly of CBF3 complexes. CBF3 assembly is not restricted during the cell cycle and occurs in discrete steps; Skp1p and Sgt1p contribute to a final, rate-limiting step in assembly, the binding of the core CBF3 subunit Ctf13p to Ndc10p. The assembly of CBF3 is opposed by its turnover and disruption of this balance compromises kinetochore function without affecting kinetochore formation on centromeric DNA.  相似文献   

17.
Spirig U  Bodmer D  Wacker M  Burda P  Aebi M 《Glycobiology》2005,15(12):1396-1406
In the central reaction of N-linked glycosylation, the oligosaccharyltransferase (OTase) complex catalyzes the transfer of a lipid-linked core oligosaccharide onto asparagine residues of nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). The Saccharomyces cerevisiae OTase has been shown to consist of at least eight subunits. We analyzed this enzyme complex, applying the technique of blue native gel electrophoresis. Using available antibodies, six different subunits were detected in the wild-type (wt) complex, including Stt3p, Ost1p, Wbp1p, Swp1p, Ost3p, and Ost6p. We demonstrate that the small 3.4-kDa subunit Ost4p is required for the incorporation of either Ost3p or Ost6p into the complex, resulting in two, functionally distinct OTase complexes in vivo. Ost3p and Ost6p are not absolutely required for OTase activity, but modulate the affinity of the enzyme toward different protein substrates.  相似文献   

18.
19.
20.
During cell division, kinetochores form the primary chromosomal attachment sites for spindle microtubules. We previously identified a network of 10 interacting kinetochore proteins conserved between Caenorhabditis elegans and humans. In this study, we investigate three proteins in the human network (hDsn1Q9H410, hNnf1PMF1, and hNsl1DC31). Using coexpression in bacteria and fractionation of mitotic extracts, we demonstrate that these proteins form a stable complex with the conserved kinetochore component hMis12. Human or chicken cells depleted of Mis12 complex subunits are delayed in mitosis with misaligned chromosomes and defects in chromosome biorientation. Aligned chromosomes exhibited reduced centromere stretch and diminished kinetochore microtubule bundles. Consistent with this, localization of the outer plate constituent Ndc80HEC1 was severely reduced. The checkpoint protein BubR1, the fibrous corona component centromere protein (CENP) E, and the inner kinetochore proteins CENP-A and CENP-H also failed to accumulate to wild-type levels in depleted cells. These results indicate that a four-subunit Mis12 complex plays an essential role in chromosome segregation in vertebrates and contributes to mitotic kinetochore assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号