共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
X chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell via a random process. Skewed XCI is relevant to many diseases, but the mechanism leading to it remains unclear. Human embryonic stem cells (hESCs) derived from the inner cell mass (ICM) of blastocyst-stage embryos have provided an excellent model system for understanding XCI initiation and maintenance. Here, we derived hESC lines with random or skewed XCI patterns from poor-quality embryos and investigated the genome-wide copy number variation (CNV) and loss of heterozygosity (LOH) patterns at the early passages of these two groups of hESC lines. It was found that the average size of CNVs on the X chromosomes in the skewed group is twice as much as that in the random group. Moreover, the LOH regions of the skewed group covered the gene locus of either XIST or XACT, which are master long non-coding RNA (lncRNA) effectors of XCI in human pluripotent stem cells. In conclusion, our work has established an experimentally tractable hESC model for study of skewed XCI and revealed an association between X chromosome instability and skewed XCI. 相似文献
6.
7.
8.
9.
Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. 总被引:6,自引:0,他引:6
L Bally-Cuif R M Alvarado-Mallart D K Darnell M Wassef 《Development (Cambridge, England)》1992,115(4):999-1009
Grafting a met-mesencephalic portion of neural tube from a 9.5-day mouse embryo into the prosencephalon of a 2-day chick embryo results in the induction of chick En-2 (ChickEn) expression in cells in contact with the graft (Martinez et al., 1991). In this paper we investigate the possibility of Wnt-1 being one of the factors involved in En-2 induction. Since Wnt-1 and En-2 expression patterns have been described as diverging during development of the met-mesencephalic region, we first compared Wnt-1 and En-2 expression in this domain by in situ hybridization in mouse embryos after embryonic day 8.5. A ring of Wnt-1-expressing cells is detected encircling the neural tube in the met-mesencephalic region at least until day 12.5. This ring consistently overlapped with the En-2 expression domain, and corresponds to the position of this latter gene's maximal expression. We subsequently studied ChickEn ectopic induction in chick embryos grafted with various portions of met-mesencephalon. When the graft originated from the level of the Wnt-1-positive ring, ChickEn induction was observed in 71% of embryos, and in these cases correlated with Wnt-1 expression in the grafted tissue. In contrast, this percentage dropped significantly when the graft was taken from more rostral or caudal parts of the mesencephalic vesicle. Taken together, these results are compatible with a prolonged role of Wnt-1 in the specification and/or development of the met-mesencephalic region, and show that Wnt-1 could be directly or indirectly involved in the regulation of En-2 expression around the Wnt-1-positive ring during this time. We also provide data on the position of the Wnt-1-positive ring relative to anatomical boundaries in the neural tube, which suggest a more general role for the Wnt-1 protein as a positional signal involved in organizing the met-mesencephalic domain. 相似文献
10.
Background
X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. 相似文献11.
Role of replication and CpG methylation in fragile X syndrome CGG deletions in primate cells 总被引:6,自引:0,他引:6
下载免费PDF全文

Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation. 相似文献
12.
DNA methylation profiles of CpG islands for cellular differentiation and development in mammals 总被引:1,自引:0,他引:1
Shiota K 《Cytogenetic and genome research》2004,105(2-4):325-334
13.
14.
Global changes in genomic methylation levels during early development of the zebrafish embryo 总被引:1,自引:0,他引:1
We have examined the methylation status of the zebrafish genome during early embryogenesis and we find evidence that methylation fluxes do occur in that organism. The parental genetic contributions to the zygote are, initially, differently methylated with the genome of the sperm being hypermethylated relative to the genome of the oocyte. Post-fertilization there is an immediate decrease in methylation of the embryonic genome but the methylation begins to increase rapidly and is re-established by the gastrulation stage. These results are consistent with the results of Santos et al. (Dev Biol 241:172–182, 2002), who examined the methylation of early mouse embryos, and this conservation argues that demethylation/re-methylation is an important part of vertebrate development.Edited by D. Tautz 相似文献
15.
16.
Background
The CCCTC-binding factor (CTCF) is a highly conserved insulator protein that plays various roles in many cellular processes. CTCF is one of the main architecture proteins in higher eukaryotes, and in combination with other architecture proteins and regulators, also shapes the three-dimensional organization of a genome. Experiments show CTCF partially remains associated with chromatin during mitosis. However, the role of CTCF in the maintenance and propagation of genome architectures throughout the cell cycle remains elusive.Results
We performed a comprehensive bioinformatics analysis on public datasets of Drosophila CTCF (dCTCF). We characterized dCTCF-binding sites according to their occupancy status during the cell cycle, and identified three classes: interphase-mitosis-common (IM), interphase-only (IO) and mitosis-only (MO) sites. Integrated function analysis showed dCTCF-binding sites of different classes might be involved in different biological processes, and IM sites were more conserved and more intensely bound. dCTCF-binding sites of the same class preferentially localized closer to each other, and were highly enriched at chromatin syntenic and topologically associating domains boundaries.Conclusions
Our results revealed different functions of dCTCF during the cell cycle and suggested that dCTCF might contribute to the establishment of the three-dimensional architecture of the Drosophila genome by maintaining local chromatin compartments throughout the whole cell cycle.Electronic supplementary material
The online version of this article (doi:10.1186/s40659-015-0019-6) contains supplementary material, which is available to authorized users. 相似文献17.
18.
Kellie J. Archer Valeria R. Mas Daniel G. Maluf Robert A. Fisher 《Molecular genetics and genomics : MGG》2010,283(4):341-349
Methylation of promoter CpG islands has been associated with gene silencing and demonstrated to lead to chromosomal instability.
Therefore, some postulate that aberrantly methylated CpG regions may be important biomarkers indicative of cancer development.
In this study we used the Illumina GoldenGate Methylation BeadArray Cancer Panel I for simultaneously profiling methylation
of 1,505 CpG sites in order to identify methylation differences in 76 liver tissues ranging from normal to pre-neoplastic
and neoplastic states. CpG sites for ESR1, GSTM2, and MME were significantly differentially methylated when comparing the pre-neoplastic tissues from patients with concomitant hepatocellular
carcinoma (HCC) to the pre-neoplastic tissues from patients without HCC. When comparing paired HCC tissues to their corresponding
pre-neoplastic non-tumorous tissues, eight CpG sites, including one CpG site that was hypermethylated (APC) and seven (NOTCH4, EMR3, HDAC9, DCL1, HLA-DOA, HLA-DPA1, and ERN1) that were hypomethylated in HCC, were identified. Our study demonstrates that high-throughput methylation technologies may
be used to identify differentially methylated CpG sites that may prove to be important molecular events involved in carcinogenesis. 相似文献
19.
20.
Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation 总被引:18,自引:0,他引:18
下载免费PDF全文

Xist RNA expression, methylation of CpG islands, and hypoacetylation of histone H4 are distinguishing features of inactive X chromatin. Here, we show that these silencing mechanisms act synergistically to maintain the inactive state. Xist RNA has been shown to be essential for initiation of X inactivation, but not required for maintenance. We have developed a system in which the reactivation frequency of individual X-linked genes can be assessed quantitatively. Using a conditional mutant Xist allele, we provide direct evidence for that loss of Xist RNA destabilizes the inactive state in somatic cells, leading to an increased reactivation frequency of an X-linked GFP transgene and of the endogenous hypoxanthine phosphoribosyl transferase (Hprt) gene in mouse embryonic fibroblasts. Demethylation of DNA, using 5-azadC or by introducing a mutation in Dnmt1, and inhibition of histone hypoacetylation using trichostatin A further increases reactivation in Xist mutant fibroblasts, indicating a synergistic interaction of X chromosome silencing mechanisms. 相似文献