首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The genetic encoding of synthetic or “non-natural” amino acids promises to diversify the functions and structures of proteins. We applied rapid codon-reassignment for creating Escherichia coli strains unable to terminate translation at the UAG “stop” triplet, but efficiently decoding it as various tyrosine and lysine derivatives. This complete change in the UAG meaning enabled protein synthesis with these non-natural molecules at multiple defined sites, in addition to the 20 canonical amino acids. UAG was also redefined in the E. coli BL21 strain, suitable for the large-scale production of recombinant proteins, and its cell extract served the cell-free synthesis of an epigenetic protein, histone H4, fully acetylated at four specific lysine sites.  相似文献   

2.
Summary It has previously been shown that the phenylalanine codon UUC encoding residue 8 of the Escherichia coli argI gene product, ornithine transcarbamylase, is misread as leucine at a high frequency during phenylalanine starvation. However, no misreading of the UUU encoding residue 3 was observed under these conditions. Using oligonucleotide-directed, site-specific mutagenesis, we have constructed mutants where these codons have been changed. Using these mutant argI genes we see a high level of mistranslation at position 8 during phenylalanine starvation whether the codon is UUU or UUC. With either codon at position 3 we see no leucine substitution. We also constructed a gene with a leucine codon at position 3. The product of this latter mutated gene is stable and active, indicating that preferential turnover of mistranslated protein is not obscuring an otherwise high rate of misreading. This would seem to indicate that it is the context rather than the particular phenylalanine codon which is important in determining these misreading levels.  相似文献   

3.
The correlation between the primary and secondary structures of proteins was analysed using a large data set from the Protein Data Bank. Clear preferences of amino acids towards certain secondary structures classify amino acids into four groups: α-helix preferrers, strand preferrers, turn and bend preferrers, and His and Cys (the latter two amino acids show no clear preference for any secondary structure). Amino acids in the same group have similar structural characteristics at their Cβ and Cγ atoms that predicts their preference for a particular secondary structure. All α-helix preferrers have neither polar heteroatoms on Cβ and Cγ atoms, nor branching or aromatic group on the Cβ atom. All strand preferrers have aromatic groups or branching groups on the Cβ atom. All turn and bend preferrers have a polar heteroatom on the Cβ or Cγ atoms or do not have a Cβ atom at all. These new rules could be helpful in making predictions about non-natural amino acids.
Snežana D. ZarićEmail:
  相似文献   

4.
Summary The contemporary genetic code is reflective of a significant correlation between the properties of amino acids and their anticodons in a periodic manner. Almost all properties of amino acids showed a greater correlation to anticodonic than to codonic dinucleoside monophosphate properties. The polarity and bulkiness of amino acid side chains can be used to predict the anticodon with considerable confidence. The results are most consistent with predictions of the direct interaction and ambiguity reduction hypotheses for the origin of the genetic code.  相似文献   

5.
Summary The lipophilicity (or hydrophobicity) of amino acids is an important property relevant for protein folding and therefore of great interest in protein engineering. For peptides or peptidomimetics of potential therapeutic interest, lipophilicity is related to absorption and distribution, and thus indirectly relates to their bioactivity. A rationalization of peptide lipophilicity requires basic knowledge of the lipophilicity of the constituting amino acids. In the present contribution we will review methods to measure or calculate the lipophilicities of amino acids, including unusual amino acids, and we will make a comparison between various lipophilicity scales.  相似文献   

6.
Given a genetic code formed by 64 codons, we calculate the number of partitions of the set of encoding amino acid codons. When there are 0-3 stop codons, the results indicate that the most probable number of partitions is 19 and/or 20. Then, assuming that in the early evolution the genetic code could have had random variations, we suggest that the most probable number of partitions of the set of encoding amino acid codons determined the actual number 20 of standard amino acids.  相似文献   

7.
In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core "house-keeping" functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables-GC and purine contents-of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern-the symmetric pattern-where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes.  相似文献   

8.
Summary Specific radioactivity in three amino acid compartments was examined in broiler chicks following a flooding dose of leucine or phenylalanine. In general, specific radioactivity of leucine and phenylalanine in deproteinated plasma (SAe) and tissue (SAi) compartments, exceeded that in acylated-tRNA (SAt). In most tissues, SAe and SAi rapidly reached a similar peak level by 5 min followed by a slow decline for the next 30 minutes. Many tissues (eg. GI tract, liver, skin, and thigh) failed to maintain equilibrium between SAe and SAi over time. More metabolically active tissues, such as GI and liver had the greatest differences between these compartments. The difference between SAe and SAi for both leucine and phenylalanine were due to SAi decreasing faster than SAe, indicating dilution with unlabelled amino acids from proteolysis. Plasma and tissue specific radioactivity overestimated tRNA specific radioactivity by as much as 5 and 2.8 fold using leucine or 2.7 and 1.4 fold using phenylalanine, respectively. These data suggest that intracellular compartmentation of protein metabolism and the coupling of protein degradation and synthesis occur, in vivo.  相似文献   

9.
J.C. Shepherd notes that codons of the type RNY (R = purine, N = any nucleotide base, Y = pyrimidine) predominate over RNR in the genes for proteins. He has hypothesized that RNY codons are the relics of “a primitive code” composed of repeating RNY triplets. He found that RNY codons predominated in fourfold RNN codon sets (family boxes). These family boxes code for valine, threonine, alanine, and glycine. We argue that the proposed “comma-less” code composed of RNY never existed, and that, in any case, survival of such a code would have long since been erased by mutations. The excess of RNY codons in family boxes is probably attributable to preference for the corresponding tRNAs.  相似文献   

10.
In this study, we estimate the translation probability to amino acid from RNA codon. With the determined 183 translation probabilities and amino-acid composition of eight highly mutated proteins, we construct the theoretical distributions of mutated amino acids in these proteins and then compare them with their actual distributions affected by mutations. Thereafter we trace the pattern of translation probabilities from RNA codons to mutated amino acids of 1053 point missense mutations. Finally, we statistically conclude that the natural mutation trend goes along the theoretical translation probability.  相似文献   

11.
Biology uses essentially 20 amino acids for its coded protein enzymes, representing a very small subset of the structurally possible set. Most models of the origin of life suggest organisms developed from environmentally available organic compounds. A variety of amino acids are easily produced under conditions which were believed to have existed on the primitive Earth or in the early solar nebula. The types of amino acids produced depend on the conditions which prevailed at the time of synthesis, which remain controversial. The selection of the biological set is likely due to chemical and early biological evolution acting on the environmentally available compounds based on their chemical properties. Once life arose, selection would have proceeded based on the functional utility of amino acids coupled with their accessibility by primitive metabolism and their compatibility with other biochemical processes. Some possible mechanisms by which the modern set of 20 amino acids was selected starting from prebiotic chemistry are discussed.  相似文献   

12.
Summary The interaction of amino acid residues with polyribonucleotides was characterized by measurements of melting temperatures (tm) for poly(A) poly(U) and poly(I)poly(C) as functions of the concentrations of various amino acid amides. The amides of hydrophilic amino acids lead to a continuous increase of tm with increasing concentration, whereas amides of hydrophobic amino acids induce a decrease of tm at low concentrations (1 mM) followed by an increase at higher concentrations. Analysis of the data by a simple site model provides the affinity of each ligand for the double helix relative to that for the single strands. This parameter decreases in the order Ala>Gly>Ser>Asn>Pro>Met, Val>Ile, Leu for poly(A) poly(U) and Ala, Gly, Ser>Asn>Pro>Val>Ile, Met, Leu for poly(I)poly(C). The special effects of hydrophobic amino acids may be related to the similarity of the codons for these amino acids. A simple model for assignment of codons to amino acids is proposed.  相似文献   

13.
Summary. Three models representing different separations of amino acid sources were used to simulate experimental specific radioactivity data and to predict protein fractional synthesis rate (FSR). Data were from a pulse dose of 14C-U Leu given to a non-growing 20 g mouse and a flooding dose of 3H Phe given to a non-growing 200 g rat. Protein synthesis rates estimated using the combined extracellular and intracellular (Ec + Ic) source pool and extracellular and plasma (Ec + Pls) source pool mouse models were 78 and 120% d−1 in liver, 14 and 16% d−1 in brain and 15 and 14% d−1 in muscle. Predicted protein synthesis rates using the Ec + Ic, Ec + Ic + Tr (combined extracellular, intracellular and aminoacyl tRNA source pool) and Ec + Pls rat models were 57, 3.4 and 57% d−1 in gastrocnemius, 58, 71 and 62% d−1 in gut, 8.3, 8.4 and 7.9% d−1 in heart, 32, 23 and 25% d−1 in kidney, 160, 90 and 80% d−1 in liver, 57, 5.5 and 57% d−1 in soleus and 56, 3.4 and 57% d−1 in tibialis. The Ec + Ic + Tr model underestimated protein synthesis rates in mouse tissues (5.0, 27 and 2.5% d−1 for brain, liver and muscle) and rat muscles (3.4, 5.5 and 3.4% d−1 for gastrocnemius, soleus and tibialis). The Ec + Pls model predicted the mouse pulse dose data best and the Ec + Ic model predicted the rat flooding dose data best. Model predictions of FSR imply that identification and separation of the source specific radioactivity is critical to accurately estimate FSR. Received June 11, 2000 Accepted September 26, 2000  相似文献   

14.
Studies on the origin of the genetic code compare measures of the degree of error minimization of the standard code with measures produced by random variant codes but do not take into account codon usage, which was probably highly biased during the origin of the code. Codon usage bias could play an important role in the minimization of the chemical distances between amino acids because the importance of errors depends also on the frequency of the different codons. Here I show that when codon usage is taken into account, the degree of error minimization of the standard code may be dramatically reduced, and shifting to alternative codes often increases the degree of error minimization. This is especially true with a high CG content, which was probably the case during the origin of the code. I also show that the frequency of codes that perform better than the standard code, in terms of relative efficiency, is much higher in the neighborhood of the standard code itself, even when not considering codon usage bias; therefore alternative codes that differ only slightly from the standard code are more likely to evolve than some previous analyses suggested. My conclusions are that the standard genetic code is far from being an optimum with respect to error minimization and must have arisen for reasons other than error minimization.[Reviewing Editor: Martin Kreitman]  相似文献   

15.
The persistent difficulties in the production of protein at high levels in heterologous systems, as well as the inability to understand pathologies associated with protein aggregation, highlight our limited knowledge on the mechanisms of protein folding in vivo. Attempts to improve yield and quality of recombinant proteins are diverse, frequently involving optimization of the cell growth temperature, the use of synonymous codons and/or the co-expression of tRNAs, chaperones and folding catalysts among others. Although protein secondary structure can be determined largely by the amino acid sequence, protein folding within the cell is affected by a range of factors beyond amino acid sequence. The folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins and ligands, the ribosome, translocation through a pore membrane, redox conditions, among others. The translation rate as well as the translation machinery itself can dramatically affect protein folding, and thus the structure and function of the protein product. This review addresses current efforts to better understand how the use of synonymous codons in the mRNA and the availability of tRNAs can modulate translation kinetics, affecting the folding, the structure and the biological activity of proteins.  相似文献   

16.
Codon usage: nature's roadmap to expression and folding of proteins   总被引:1,自引:0,他引:1  
  相似文献   

17.
Summary We have investigated the relationship between the G + C content of silent (synonymous) sites in codons and the amino acid composition of encoded proteins for approximately 1,600 human genes. There are positive correlations between silent site G + C and the proportions of codons for Arg, Pro, Ala, Trp, His, Gln, and Leu and negative ones for Tyr, Phe, Asn, Ile, Lys, Asp, Thr, and Glu. The median proteins coded by groups of genes that differ in silent-site G + C content also differ in amino acid composition, as do some proteins coded by homologous genes. The pattern of compositional change can be largely explained by directional mutation pressure, the genetic code, and differences in the frequencies of accepted amino acid substitutions; the shifts in protein composition are likely to be selectively neutral.Offprint requests to: D.W. Collins  相似文献   

18.
Summary Chou-Fasman parameters, measuring preferences of each amino acid for different conformational regions in proteins, were used to obtain an amino acid difference index of conformational parameter distance (CPD) values. CPD values were found to be significantly lower for amino acid exchanges representing in the genetic code transitions of purines, GA than for exchanges representing either transitions of pyrimidines, CU, or transversions of purines and pyrimidines. Inasmuch as the distribution of CPD values in these non GA exchanges resembles that obtained for amino acid pairs with double or triple base differences in their underlying codons, we conclude that the genetic code was not particularly designed to minimize effects of mutation on protein conformation. That natural selection minimizes these changes, however, was shown by tabulating results obtained by the maximum parsimony method for eight protein genealogies with a total occurrence of 4574 base substitutions. At the beginning position of the codons GA transitions were in very great excess over other base substitutions, and, conversely, CU transitions were deficient. At the middle position of the codons only fast evolving proteins showed an excess of GA transitions, as though selection mainly preserved conformation in these proteins while weeding out mutations affecting chemical properties of functional sites in slow evolving proteins. In both fast and slow evolving proteins the net direction of transitions and transversions was found to be from G beginning codons to non-G beginning codons resulting in more commonly occurring amino acids, especially alanine with its generalized conformational properties, being replaced at suitable sites by amino acids with more specialized conformational and chemical properties. Historical circumstances pertaining to the origin of the genetic code and the nature of primordial proteins could account for such directional changes leading to increases in the functional density of proteins.In order to further explore the course of protein evolution, a modified parsimony algorithm was developed for constructing protein genealogies on the basis of minimum CPD length. The algorithm's ability to judge with finer discrimination that in protein evolution certain pathways of amino acid substitution should occur more readily than others was considered a potential advantage over strict maximum parsimony. In developing this CPD algorithm, the path of minimum CPD length through intermediate amino acids allowed by the genetic code for each pair of amino acids was determined. It was found that amino acid exchanges representing two base changes have a considerably lower average CPD value per base substitution than the amino acid exchanges representing single base changes. Amino acid exchanges representing three base changes have yet a further marked reduction in CPD per base change. This shows how extreme constraining effects of stabilizing selection can be circumvented, for by way of intermediate amino acids almost any amino acid can ultimately be substituted for another without damage to an evolving protein's conformation during the process.  相似文献   

19.
Arylisocyanates are important intermediates in the chemical industry. Amongst the main damage after low levels of isocyanate exposure are lung sensitization and asthma. Protein adducts of isocyanates might be involved in the aetiology of sensitization reactions. Blood protein adducts are used as dosimeters for modifications of macromolecules in the target organs where the disease develops. To develop methods for the quantitation of protein adducts we reacted 4 methylphenyl isocyanate 4MPI with the tripeptide valyl glycyl glycine and with single amino acids yielding N 4 methylphenyl carbamoyl L valyl glycyl glycine 4MPI Val Gly Gly , N 4 methylphenyl carbamoyl L valine 4MPI Val , N 4 methylphenyl carbamoyl L aspartic acid 4MPI Asp , N acetyl S 4 methylphenyl carbamoyl L cysteine 4MPI AcCys , N acetyl N 4 methylphenyl carbamoyl lysine 4MPI AcLys , N acetyl O 4 methylphenyl carbamoyl tyrosine 4MPI AcTyr and N acetyl O 4 methylphenyl carbamoyl D,L serine 4MPI AcSer . The hydrolysis of the adducts was tested under acidic and basic conditions, to obtain the maximum yield of 4 methylaniline 4MA . The isocyanates were hydrolysed for 1 h, 3h and 24h at 100 C with 6 M HCl in and or 0.1 M NaOH at room temperature, following methods applied for the analyses of biological samples of arylisocyanate exposed workers. In addition, we applied a new protocol: the adducts were hydrolyzed for 1-24 h in 0.3 M NaOH at 100 C. The hydrolysates were analysed using HPLC with UV detection and quantified against the internal standard, 4 fluoroaniline or 4 chloroaniline. 4MA was obtained with the best yields using 0.3M NaOH; after 24 h all amino acid adducts were cleaved under these conditions. Acid hydrolysis of 4MPI Val and 4MPI Asp yielded the respective hydantoins 3 4 methylphenyl 5 isopropyl 1,3 imidazoline 2,4 dione and 2 1 4 methylphenyl 2,5 dioxoperhydro 4 imidazolyl acetic acid. For future studies, we propose to hydrolyse biological samples with 0.3 M NaOH at 100 C to release the maximum amount of 4MA from the adducts. However, in biological samples from workers, hydrolysable adducts can also result from arylamine exposure. Therefore, we propose to analyse the N terminal adducts of isocyanates with blood protein to distinguish between arylamine and arylisocyanate exposure.  相似文献   

20.
Arylisocyanates are important intermediates in the chemical industry. Amongst the main damage after low levels of isocyanate exposure are lung sensitization and asthma. Protein adducts of isocyanates might be involved in the aetiology of sensitization reactions. Blood protein adducts are used as dosimeters for modifications of macromolecules in the target organs where the disease develops. To develop methods for the quantitation of protein adducts we reacted 4 methylphenyl isocyanate 4MPI with the tripeptide valyl glycyl glycine and with single amino acids yielding N 4 methylphenyl carbamoyl L valyl glycyl glycine 4MPI Val Gly Gly, N 4 methylphenyl carbamoyl L valine 4MPI Val, N 4 methylphenyl carbamoyl L aspartic acid 4MPI Asp, N acetyl S 4 methylphenyl carbamoyl L cysteine 4MPI AcCys, N acetyl N 4 methylphenyl carbamoyl lysine 4MPI AcLys, N acetyl O 4 methylphenyl carbamoyl tyrosine 4MPI AcTyr and N acetyl O 4 methylphenyl carbamoyl D,L serine 4MPI AcSer. The hydrolysis of the adducts was tested under acidic and basic conditions, to obtain the maximum yield of 4 methylaniline 4MA. The isocyanates were hydrolysed for 1 h, 3h and 24h at 100 C with 6 M HCl in and or 0.1 M NaOH at room temperature, following methods applied for the analyses of biological samples of arylisocyanate exposed workers. In addition, we applied a new protocol: the adducts were hydrolyzed for 1-24 h in 0.3 M NaOH at 100 C. The hydrolysates were analysed using HPLC with UV detection and quantified against the internal standard, 4 fluoroaniline or 4 chloroaniline. 4MA was obtained with the best yields using 0.3M NaOH; after 24 h all amino acid adducts were cleaved under these conditions. Acid hydrolysis of 4MPI Val and 4MPI Asp yielded the respective hydantoins 3 4 methylphenyl 5 isopropyl 1,3 imidazoline 2,4 dione and 2 1 4 methylphenyl 2,5 dioxoperhydro 4 imidazolyl acetic acid. For future studies, we propose to hydrolyse biological samples with 0.3 M NaOH at 100 C to release the maximum amount of 4MA from the adducts. However, in biological samples from workers, hydrolysable adducts can also result from arylamine exposure. Therefore, we propose to analyse the N terminal adducts of isocyanates with blood protein to distinguish between arylamine and arylisocyanate exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号