首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The near simultaneous radiation of the major eukaryotic evolutionary assemblages — plants, animals, fungi, and at least three other complex protist assemblages worthy of ‘kingdom level’ status — was preceded by the divergence of many independent protist lineages. The earliest branches are represented by organisms that do not contain mitochondria or plastids, suggesting that the primitive eukaryotic state did not include these organelles. New information about nuclear-coded proteins that localize in the mitochondrion, however, suggests that the ancestral symbionts for mitochondria were present in the first eukaryotes. Phylogenetic support for this hypothesis is persuasive but it is not possible to account for the relative times of divergence for mitochondria and their ancestral symbionts relative to eukaryotic branching patterns inferred from nuclear genes.  相似文献   

2.
Phylogenetic analyses and sequence surveys of developmental regulator gene families indicate that two large-scale gene duplications, most likely genome duplications, occurred in ancestors of vertebrates. Relaxed constraints allowed duplicated and thus redundant genes to diverge in a two stage mechanism. Neutral changes dominated at first but then positively selected regulatory changes evolved the novel and increasingly complex vertebrate developmental program.  相似文献   

3.
4.
Cell biology depends on the interactions of macromolecules, such as protein—DNA, protein—protein or protein—nucleotide interactions. GTP-binding proteins are no exception to the rule. They regulate cellular processes as diverse as protein biosynthesis and intracellular membrane trafficking. Recently, a large number of genes encoding GTP-binding proteins and the proteins that interact witht these molecular switches have been cloned and expressed. The 3D structures of some of these have also been elucidated  相似文献   

5.
6.
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing ‘introns-early’ versus ‘introns-late’ controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations.  相似文献   

7.
Infection-related development in the rice blast fungus Magnaporthe grisea   总被引:8,自引:0,他引:8  
Recent developments have been made in the identification of signal transduction pathways and gene products involved in the infection-related development of the rice blast fungus, Magnaporthe grisea. It has been established that cAMP-dependent and MAP kinase-mediated signaling are both critical for appressorium morphogenesis and function. These signaling pathways may act downstream of hydrophobin-mediated surface sensing by the growing germ tube. Several genes have been identified that are required for invasive growth of M. grisea including genes that allow adaptation of fungal metabolism to growth within plant tissues.  相似文献   

8.
9.
The most significant feature of the current transgenic models of Alzheimer's disease continues to be the amyloid phenotype. In the past year, mice have been more extensively characterized in terms of the effect of amyloid accumulation on downstream events, such as neurodegeneration and behavioral changes, but the results have been complex. Genetic crosses have shown that apolipoprotein E and TGF-β1 influence the deposition event and that the presenilins act synergistically with the amyloid precursor protein in pathology development. The mice have great utility in amyloid modulation studies but are still not complete models of Alzheimer's disease.  相似文献   

10.
Protein tyrosine binding (PTB) and ‘post synaptic density disc-large zo-1’ (PDZ) domains bind to short peptidic ligands by augmentation of one of the domain's β sheets and other recognition mechanisms. The two domain classes have a superficial resemblance to each other, even though no sequential homology exists. The structural bases of the interactions are well understood for the domains now experimentally determined, and ligand—target pairs can probably be identified in favorable cases by analogy with the known domains. For both PTB and PDZ classes, functional activities are still not fully defined: it is possible that these domain classes, along with pleckstrin homology domains, have multiple roles.  相似文献   

11.
12.
Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.  相似文献   

13.
The past year has seen significant advances in the reduction to practice of inkjet dispensing technology in drug discovery applications. Although much of the work in this area has been done by relatively few ‘early innovators’, broader acceptance of the feasibility of the use of inkjet dispensing is on the rise. Of the three main areas of drug discovery — genomics, high-throughput screening, and combinatorial chemistry — high-throughput screening has had the most applications to date. The burgeoning field of genomics has seen rapid incorporation of technologies that enable miniaturization of gene expression experiments. Inkjet dispensing has a clear role in this effort. Finally, as the miniaturization needs of combinatorial chemistry become more clear, inkjet dispensing technology will potentially play a role.  相似文献   

14.
Heterocystous cyanobacteria grow as multicellular organisms with a distinct one-dimensional developmental pattern of single nitrogen-fixing heterocysts separated by approximately ten vegetative cells. Several genes have been identified that are required for heterocyst development and pattern formation. A key regulator, HetR, has been recently shown to be aserine-type protease.  相似文献   

15.
Over the next decade, the impact of library synthesis will play a major role in shortening the lead optimization phase of drug discovery. The prognosis for combinatorial chemistry to discover fundamentally different new classes of therapeutically active small molecules against some of the more difficult biological targets is less certain. Expectations are high because the technology potentially allows us to sample available drug space by synthesizing all possible small molecule ligands (variously estimated to be between 1030–1050 compounds). Some caution is advised, however, since, despite recent increases in high-throughput screening of substantially greater numbers of synthetic compounds and natural products, we are not routinely finding a plethora of new structures. The outcome may be that combinatorial chemistry offers us the ability to work faster on finding ligands for well-established tractable targets, such as G-protein-coupled receptors, ion channels or proteases, rather than, say, the more complex protein—protein interactions which from the majority of targets in signal transduction pathways.  相似文献   

16.
Many genes required for the S-phase and DNA-damage checkpoints have been identified in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This year many checkpoint genes have been sequenced, providing new information about the mechanism of checkpoint control. Several of these genes are conserved between the two yeasts but others are species-specific.  相似文献   

17.
Comparative maps display the chromosomal location of homologous genes in different species and highlight genetic segments that are conserved in evolution. These maps are used to study chromosomal changes that occurred during the divergence of mammalian lineages, to identify candidates for hereditary disease genes, and to facilitate mapping in other species. Recently, physical mapping in regions of known conserved linkage has revealed previously undetected chromosomal changes that may provide clues to understanding chromosomal structure and function and evolutionary processes. The availability of these data in electronically accessible formats is critical to the growth and analysis of comparative maps.  相似文献   

18.
Recent research has focused on proteins important for early steps in replication in eukaryotes, and particularly on Cdc6/Cdc18, the MCMs, and Cdc45. Although it is still unclear exactly what role these proteins play, it is possible that they are analogous to initiation proteins in prokaryotes. One specific model is that MCMs form a hexameric helicase at replication forks, and Cdc6/Cdc18 acts as a ‘clamp-loader’ required to lock the MCMs around DNA. The MCMs appear to be the target of Cdc7-Dbf4 kinase acting at individual replication origins. Finally, Cdc45 interacts with MCMs and may shed light on how cyclin-dependent kinases activate DNA replication.  相似文献   

19.
Telomeres are guanine-rich regions that are located at the ends of chromosomes and are essential for preventing aberrant recombination and protecting against exonucleolytic DNA degradation. Telomeres are maintained by telomerase, an RNA-dependent DNA polymerase. Because telomerase is known to be expressed in tumor cells, which concurrently have short telomeres, and not in most somatic cells, which usually have long telomeres, telomerase and telomere structures have been recently proposed as attractive targets for the discovery of new anticancer agents. The most exciting current strategies are aimed at specifically designing new drugs that target telomerase or telomeres and new models have been formulated to study the biological effects of inhibitors of telomerase and telomeres both in vitro and in vivo.  相似文献   

20.
Nucleomorphs are the vestigial nuclear genomes of eukaryotic algal cells now existing as endosymbionts within a host cell. Molecular investigation of the endosymbiont genomes has allowed important insights into the process of eukaryote/eukaryote cell endosymbiosis and has also disclosed a plethora of interesting genetic phenomena. Although nucleomorph genomes retain classic eukaryotic traits such as linear chromosomes, telomeres, and introns, they are highly reduced and modified. Nucleomorph chromosomes are extremely small and encode compacted genes which are disrupted by the tiniest spliceosomal introns found in any eukaryote. Mechanisms of gene expression within nucleomorphs have apparently accommodated increasingly parsimonious DNA usage by permitting genes to become co-transcribed or, in select cases, to overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号