共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor 总被引:8,自引:0,他引:8
Satellite cells in skeletal muscle have been implicated in muscle growth processes and regeneration. However, very little is known about the regulation of their proliferation and differentiation. The effect of fibroblast growth factor (FGF) on the proliferation of myogenic cells from adult rat skeletal muscle, presumably satellite cells, has been examined, and FGF has been found to be a potent mitogen for these cells. The mitogenic properties of serum were also documented and studied in conjunction with FGF. Even under conditions of maximal stimulation by serum, the addition of FGF caused a substantial increase in proliferation of satellite cells. The additive nature of the FGF and serum-stimulatory activity suggests that FGF-like molecules are not the active agents in serum and that more than one pathway may be involved in stimulating satellite cell proliferation. 相似文献
2.
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with various combinations of transforming growth factor (TGF)-beta, fibroblast growth factor (FGF), and insulin-like growth factor I (IGF-I). In serum-free defined medium the following observations were made: TGF-beta depressed proliferation and inhibited differentiation; FGF stimulated proliferation and depressed differentiation; IGF-I stimulated proliferation to a small degree but demonstrated a more pronounced stimulation of differentiation. In evaluating combinations of these three factors, the differentiation inhibiting effect of TGF-beta could not be counteracted by any combination of IGF-I or FGF. The proliferation-depressing activity of TGF-beta, however, could not inhibit the mitogenic activity of FGF. Maximum stimulation of proliferation was observed in the presence of both FGF and IGF-I. The highest percentage fusion was also observed under these conditions, but differentiation with minimal proliferation resulted from treatment with IGF-I, alone. By altering the concentrations of TGF-beta, FGF, and IGF-I, satellite cells can be induced to proliferate, differentiate, or to remain quiescent. 相似文献
3.
Suzuki S Yamanouchi K Soeta C Katakai Y Harada R Naito K Tojo H 《Biochemical and biophysical research communications》2002,292(3):709-714
Hepatocyte growth factor (HGF) is present in skeletal muscle and facilitates skeletal muscle regeneration by activating quiescent satellite cells and stimulating their proliferation. However, possible involvement of HGF from non-muscle organs during muscle regeneration is still uncovered. Since liver injury induces HGF expression in distal HGF-producing organs such as lung, kidney and spleen, we examined if this is the case in muscle injury in analogy. In rat femoral muscle, HGF protein levels were elevated within 1 h after muscle injury, with a simultaneous proteolytic activation of HGF protein. Semiquantitative RT-PCR analysis revealed an elevation of HGF mRNA expression after muscle injury in the liver and spleen, and also an increase of HGF protein levels in the spleen, suggesting the presence of endocrine HGF-inducing factor(s) during muscle regeneration. Indeed, the sera from the rat with muscle regeneration were capable of inducing HGF mRNA expression when applied to primary cultured spleen cells from intact rats. These results indicated that skeletal muscle injury induces HGF expression in the non-muscle HGF-producing organs, especially in the spleen, and suggested the possible involvement of non-muscle organ-derived HGF in activation/proliferation of satellite cells during muscle regeneration. 相似文献
4.
Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration 总被引:2,自引:0,他引:2
Skeletal muscle regeneration is a complex process in which many agents are involved. When skeletal muscle suffers an injury, quiescent resident myoblasts called satellite cells are activated to proliferate, migrate, and finally differentiate. This whole process occurs in the presence of growth factors, the extracellular matrix (ECM), and infiltrating macrophages. We have shown previously that different proteoglycans, either present at the plasma membrane or the ECM, are involved in the differentiation process by regulating growth factor activity. In this article, we evaluated the role of glycosaminoglycans (GAGs) in myoblast proliferation and migration, using C2C12, a satellite cell-derived cell line. A synergic stimulatory effect on myoblast proliferation was observed with hepatocyte growth factor (HGF) and fibroblast growth factor type 2 (FGF-2), which was dependent on cell sulfation. The GAG dermatan sulfate (DS) enhanced HGF/FGF-2-dependent proliferation at 1-10 ng/ml. However, decorin, a proteoglycan containing DS, was unable to reproduce this enhanced proliferative effect. On the other hand, HGF strongly increased myoblast migration. The HGF-dependent migratory process required the presence of sulfated proteoglycans/GAGs present on the myoblast surface, as inhibition of both cell sulfation, and heparitinase (Hase) and chondroitinase ABC (Ch(abc)) treatment of myoblasts, resulted in a very strong inhibition of cell migration. Among the GAGs analyzed, DS most increased HGF-dependent myoblast migration. Taken together, these findings showed that DS is an enhancer of growth factor-dependent proliferation and migration, two critical processes involved in skeletal muscle formation. 相似文献
5.
6.
The effects of long-term hindlimb unweighting by tail suspension on postnatal growth of 20-day rat extensor digitorum longus (EDL) and soleus muscles were studied. Morphological assay indicated that radial growth of soleus myofibers was completely inhibited between 3 and 10 days of suspension and reduced thereafter, leading to a severe attenuation (-76% from control) over the total experimental period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In addition, myofibers were arranged parallel to the long axis of the muscle, an orientation associated with chronologically younger muscles, suggesting morphological maturation of the soleus muscle had been delayed by suspension. In contrast, radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions and remained within approximately 5% of control at all times. Suspension also influenced the normal changes that occur in satellite cell and myonuclear populations during postnatal growth. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers after only 3 days in both soleus and EDL muscles. The reduced number of satellite cells within 3 days of initiating hindlimb suspension appeared to be the result of their incorporation into myofibers while the long-lasting reduction appeared to be the added effects of decreased proliferative activity. In the soleus, this reduction in number and proliferation of satellite cells persisted throughout the experimental period and resulted in an overall 43% fewer myonuclei and 45% fewer satellite cells than control at 50 days of age. In contrast, both the total number and mitotic activity of satellite cells in the EDL rapidly returned to weight-bearing control levels by day 10 of suspension, resulting in no overall reduction in myonuclear accretion. 相似文献
7.
Skibinski G Elborn JS Ennis M 《American journal of physiology. Lung cellular and molecular physiology》2007,293(1):L69-L76
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells (P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-alpha neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE(2) may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied. 相似文献
8.
The epidermal growth factor (EGF) family is implicated in the development and function of multiple cells and organs, including the pancreas. We used a serum-free, low-cell density culture system to investigate the effect of EGFs on fetal pancreas cells. By RT-PCR, the EGF receptors ErbB 1-3 were detected in the developing mouse pancreas between embryonic day (E) 13.5 and E17.5, whereas ErbB4 was not detected until E17.5. The presence but not absence of the basement membrane glycoprotein laminin-1, betacellulin, and to a lesser extent EGF, transforming growth factor alpha, heparin binding EGF, and epiregulin induced E15.5 pancreatic cells to proliferate and form cystoid and solid colonies. These results demonstrate that laminin-1 and EGF signaling pathways interact to promote pancreas development. 相似文献
9.
FGF-2 exerts its pleiotropic effects on cell growth and differentiation by interacting with specific cell surface receptors. In addition, exogenously added FGF-2 is translocated from outside the cell to the nucleus during G1-S transition. In this study, we show that a single point mutation in FGF-2 (substitution of residue serine 117 by alanine) is sufficient to drastically reduce its mitogenic activity without affecting its differentiation properties. The FGF-2(S117A) mutant binds to and activates tyrosine kinase receptors and induces MAPK and p70S6K activation as strongly as the wild-type FGF-2. We demonstrate that this mutant enters NIH3T3 cells, is translocated to the nucleus, and is phosphorylated similar to the wild-type growth factor. This suggests that FGF-2 mitogenic activity may require, in addition to signaling through cell surface receptors and nuclear translocation, activation of nuclear targets. We have previously shown that, in vitro, FGF-2 directly stimulates the activity of the casein kinase 2 (CK2), a ubiquitous serine/threonine kinase involved in the control of cell proliferation. We report that, in vivo, FGF-2(WT) transiently interacts with CK2 and stimulates its activity in the nucleus during G1-S transition in NIH3T3 cells. In contrast, the FGF-2(S117A) mutant fails to interact with CK2. Thus, our results show that FGF-2 mitogenic and differentiation activities can be dissociated by a single point mutation and that CK2 may be a new nuclear effector involved in FGF-2 mitogenic activity.-Bailly, K., Soulet, F., Leroy, D., Amalric, F., Bouche, G. Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor (FGF-2). 相似文献
10.
Peripheral motor nerve trauma severely compromises skeletal muscle contractile function. Satellite cells respond to denervation by dividing multiple times, ultimately fusing with other satellite cells or myocytes to form new muscle fibers. After chronic denervation, satellite cell numbers decline dramatically, impairing the ability to regenerate and repair myofibers. This satellite cell depletion may contribute to the mechanical deficit observed in denervated or reinnervated muscle. Apoptosis, an evolutionarily conserved form of cell suicide, is a potential mechanism for satellite cell depletion in denervated skeletal muscle. This work tested the hypothesis that skeletal muscle denervation increases satellite cell susceptibility to apoptotic cell death. Adult rats underwent sciatic nerve transection to denervate the distal hindlimb musculature; rats of similar age without the operation served as controls. Two, 6, 10, or 20 weeks after denervation (n = 6 each group), the gastrocnemius and soleus were excised, enzymatically digested, and plated for satellite cell culture. After reaching 95 percent confluence, satellite cells were treated for 24 hours with tumor necrosis factor-alpha (20 ng/ml) and actinomycin D (250 ng/ml), known pro-apoptotic agents. Immunostaining for activated caspases, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and hematoxylin and eosin staining were performed to identify apoptotic satellite cells. Percentages of apoptotic cells were quantified histomorphometrically. In addition, the presence or absence of bcl-2 and bax was determined by Western blot analysis of control, 6 weeks of denervation, and 10 weeks of denervation specimens. At 6 and 10 weeks after nerve transection, TUNEL and caspase activity were increased more than two-fold in satellite cells isolated from denervated muscle compared with those isolated from control muscle (p < 0.05). In all experimental groups, retention of adherence to the collagen-coated substrate was strongly associated with satellite cell survival. Western blot analysis revealed that adherent satellite cells from all groups expressed both bcl-2 and bax. These data support the authors' hypothesis that skeletal muscle denervation increases satellite cell susceptibility to apoptotic cell death. Apoptosis may play a causative role in the depletion of satellite cells in long-term denervated skeletal muscle. 相似文献
11.
The potential role of the fibroblast growth factor (FGF) familyduring stretch-induced postnatal skeletal muscle hypertrophy wasanalyzed by using an avian wing-weighting model. After 2 or 11 days ofweighted stretch, anterior latissimus dorsi (ALD) muscles were, onaverage, 34 (P < 0.01) and 85%(P < 0.01) larger, respectively, than unweighted ALD control muscles. By using quantitative RT-PCR, FGF-1 mRNA expression was found to be significantly decreased in ALDmuscles stretched for 2 or 11 days. In contrast, FGF-4 and FGF-10 mRNAexpression was significantly increased 2 days after initiation ofstretch. FGF-2, FGF-10, fibroblast growth factor receptor 1, andFREK mRNA expression was significantly increased at 11 days poststretch. Increases in FGF-2 and FGF-4 protein could bedetected throughout the myofiber periphery after 11 days of stretch. Ona cellular level, FGF-2 and FGF-4 proteins were differentiallylocalized. This differential expression pattern and proteinlocalization of the FGF family in response to stretch-induced hypertrophy suggest distinct roles for individual FGFs during thepostnatal hypertrophy process. 相似文献
12.
Masahiro Sugano Yoshiko Iwasaki Masako Abe Toyoki Maeda Keiko Tsuchida Naoki Makino 《Molecular and cellular biochemistry》2009,322(1-2):113-117
TNF-alpha impairs endothelial cell growth and angiogenesis. The anti-angiogenic effects of TNF-alpha have mainly been explained by its modulating vascular endothelial growth factor (VEGF)-specific angiogenic pathway. Hepatocyte growth factor (HGF) also promotes the growth of vascular endothelial cells and the development of new blood vessels through interaction with its specific receptor, c-met. However, it is little known whether TNF-alpha interacts with the HGF system or not. In this study, we examined the effect of TNF-alpha on HGF receptor function. In human umbilical venous endothelial cells (HUVEC), TNF-alpha acutely inhibited the phosphorylation and activation of c-met induced by HGF. The ability of TNF-alpha to inhibit HGF-induced c-met activity was impaired by sodium orthovanadate, suggesting that the inhibitory effect of TNF-alpha was mediated by a protein-tyrosine phosphatase. Treatment of HUVEC with TNF-alpha impairs the ability of HGF to activate MAPK and Akt, and this effect was blocked by SOV. HGF-induced c-met responses specifically associated with endothelial cell proliferation and mitogen-activated protein kinase activation were also inhibited by TNF-alpha, and these were reversed by sodium orthovanadate. HGF-induced SHP-1 (a cytoplasmic protein-tyrosine phosphatase) and pretreatment of HUVEC with TNF-alpha prior to HGF treatment resulted in substantial increase in the amount of SHP-1. These data suggest that TNF-alpha employs a protein-tyrosine phosphatase and may exert its anti-angiogenic function in part by modulating the HGF-specific angiogenic pathway in pathological settings. 相似文献
13.
14.
Acidic and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells 总被引:7,自引:0,他引:7
J Alterio Y Courtois J Robelin D Bechet I Martelly 《Biochemical and biophysical research communications》1990,166(3):1205-1212
We postulated that Fibroblast Growth Factor (FGF) involved in fetal or regenerative morphogenesis of skeletal muscle originated from this tissue. Using a bovine retina cDNA probe encoding acidic FGF, we showed that growing muscles from bovine fetuses express this mRNA, but that this expression is reduced in neonate muscles. Cultures of proliferating satellite cells isolated from adult rat muscles expressed aFGF mRNA strongly but bFGF mRNA weakly; these mRNAs disappeared in cells differentiated into myotubes. 10(-7)M 12-O-tetradecanoyl phorbol -13-acetate (TPA) increased aFGF mRNA expression in both proliferating and differentiated satellite cells. Contrastingly, proliferating L6 myogenic cells only expressed aFGF mRNA significantly under TPA treatment. Therefore, the satellite cells did seem to be a possible source for FGF, especially aFGF, which might regulate the myogenic process. 相似文献
15.
Upregulation of neuropilin-1 by basic fibroblast growth factor enhances vascular smooth muscle cell migration in response to VEGF 总被引:2,自引:0,他引:2
Liu W Parikh AA Stoeltzing O Fan F McCarty MF Wey J Hicklin DJ Ellis LM 《Cytokine》2005,32(5):206-212
Neuropilin-1 (NRP-1) is a co-receptor for vascular endothelial growth factor (VEGF). During neovascularization, vascular smooth muscle cells (VSMCs) and pericytes modulate the function of endothelial cells. Factors that mediate NRP-1 in human VSMCs (hVSMCs) remain to be elucidated. We studied various angiogenic cytokines to identify factors that increase NRP-1 expression in hVSMCs. Treatment of hVSMCs with basic fibroblast growth factor (b-FGF) induced expressions of NRP-1 mRNA and protein whereas epidermal growth factor, insulin-like growth factor-1, and interleukin-1beta did not. b-FGF induced phosphorylation of Erk-1/2 and JNK. MEK1/2 and nuclear factor kappa B (NF-kappaB) inhibitors (U0126 and TLCK, respectively) blocked the ability of b-FGF to induce NRP-1 mRNA expression, but inhibition of JNK (SP600125) or PI3-kinase activity (wortmannin) did not. Further, the increase in NRP-1 expression by b-FGF enhanced hVSMCs migration in response to VEGF(165). This effect was dependent on the binding of VEGF(165) to VEGFR-2, as blocking antibodies to VEGFR-2, but not VEGFR-1, inhibited VEGF(165)-induced migration. In conclusion, b-FGF increased NRP-1 expression in hVSMCs that in turn enhance the effect of VEGF(165) on cell migration. The enhanced migration of hVSMCs was mediated through binding of VEGF(165) to both NRP-1 and VEGFR-2, as inhibition of VEGFR-2 on these cells blocked the effect of VEGF-mediated cell migration. 相似文献
16.
Bronchial epithelial cell matrix production in response to silica and basic fibroblast growth factor 总被引:5,自引:0,他引:5
Bodo M Baroni T Bellocchio S Calvitti M Lilli C D'Alessandro A Muzi G Lumare A Abbritti G 《Molecular medicine (Cambridge, Mass.)》2001,7(2):83-92
BACKGROUND: Previous studies show that macrophages, lung fibroblasts, and their soluble mediators are responsible for the onset and development of pulmonary fibrosis. This study was conducted to determine whether airway epithelial cells are also directly involved in response to fibrogenic agents and consequently in the pathogenesis of lung fibrosis. To verify the hypothesis, we determined whether silica acts directly on human bronchial epithelial cells by stimulating cytokine and growth factor release and by modifying matrix production. MATERIALS AND METHODS: An SV40 large T antigen-transformed human airway epithelial cell line, 16HBE14o (16HBE), was used. The expression profile of some proinflammatory interleukins (ILs), such as IL-1alpha, IL-1beta and IL-6 and their modulation by silica, were evaluated by polymerase chain reaction (PCR) analysis. Transforming growth factor beta (TGFbeta) and basic fibroblast growth factor (bFGF) mRNA levels were tested by Northern blotting in the presence and in the absence of silica. The silica- and/or bFGF-induced effects on matrix components (total proteins, collagen, and fibronectin) were also evaluated using radio-labeled precursors. RESULTS: The results demonstrated 16HBE internalized silica particles. Silica induced a little IL-6 secretion, without affecting IL-1 and TGFbeta isoform production and strongly stimulated bFGF mRNA level and bFGF protein secretion. Silica also induced changes in 16HBE production of total proteins, collagen, and fibronectin production. When added in combination with the growth factor, it strengthened bFGF stimulation of matrix component secretion. CONCLUSIONS: These results support the hypothesis that the changes in matrix components are due to a direct effect of silica on bronchial epithelial cells. Silica-induced over-secretion of bFGF suggests that autocrine and paracrine differentiation loops for bFGF may also be operative and that these mechanisms may be involved in the pathogenesis of pulmonary fibrosis. In the future, cytokine-directed therapeutic strategies might find a place in clinical practice. 相似文献
17.
The heparan sulfate proteoglycan, glypican-1, is a low affinity receptor for fibroblast growth factor 2 (FGF2). Fibroblast growth factor 2 is a potent stimulator of skeletal muscle cell proliferation and an inhibitor of differentiation. Heparan sulfate proteoglycans like glypican-1 are required for FGF2 to transduce an intracellular signal. Understanding the role of glypican-1 in the regulation of FGF2-mediated signaling is important in furthering the understanding of the biological processes involved in muscle development and growth. In the current study, a turkey glypican-1 expression vector construct was transfected into turkey myogenic satellite cells resulting in the overexpression of glypican-1. The proliferation, differentiation, and responsiveness to FGF2 were measured in control and transfected cell cultures. The overexpression of glypican-1 in turkey myogenic satellite cells increased both satellite cell proliferation and FGF2 responsiveness, but decreased the rate of differentiation. The current data support glypican-1 modulation of both proliferation and differentiation through an FGF2-mediated pathway. 相似文献
18.
19.
Oncogenic Ras-induced proliferation requires autocrine fibroblast growth factor 2 signaling in skeletal muscle cells 下载免费PDF全文
Constitutively activated Ras proteins are associated with a large number of human cancers, including those originating from skeletal muscle tissue. In this study, we show that ectopic expression of oncogenic Ras stimulates proliferation of the MM14 skeletal muscle satellite cell line in the absence of exogenously added fibroblast growth factors (FGFs). MM14 cells express FGF-1, -2, -6, and -7 and produce FGF protein, yet they are dependent on exogenously supplied FGFs to both maintain proliferation and repress terminal differentiation. Thus, the FGFs produced by these cells are either inaccessible or inactive, since the endogenous FGFs elicit no detectable biological response. Oncogenic Ras-induced proliferation is abolished by addition of an anti-FGF-2 blocking antibody, suramin, or treatment with either sodium chlorate or heparitinase, demonstrating an autocrine requirement for FGF-2. Oncogenic Ras does not appear to alter cellular export rates of FGF-2, which does not possess an NH(2)-terminal or internal signal peptide. However, oncogenic Ras does appear to be involved in releasing or activating inactive, extracellularly sequestered FGF-2. Surprisingly, inhibiting the autocrine FGF-2 required for proliferation has no effect on oncogenic Ras-mediated repression of muscle-specific gene expression. We conclude that oncogenic Ras-induced proliferation of skeletal muscle cells is mediated via a unique and novel mechanism that is distinct from Ras-induced repression of terminal differentiation and involves activation of extracellularly localized, inactive FGF-2. 相似文献
20.
Douglas R. Cook Matthew E. Doumit Robert A. Merkel 《Journal of cellular physiology》1993,157(2):307-312
Transforming growth factor beta-1 (1GF-β) stimulated porcine satellite cell proliferation in basal serum-free medium by 25%, but inhibited growth in serumcontaining medium by 58%. The effect of TGF-β on cell proliferation in serumfree medium was examined in combination with the following human recombinant growth factors: platelet-derived growth factor-BB (PDGF), basic fibroblast growth factor (FGF), insulin-like growth factor I (IGF-I), and epidermal growth factor (EGF). TGF-β inhibited PDGF-stimulated proliferation, enhanced FGF-stimulated proliferation, and had no effect on proliferation stimulated by IGF-I. The response of satellite cells to EGF and TGF-β in serum-free medium was not different than TGF-β alone. TGF-β depressed proliferation stimulated by the following combinations of two growth factors: PDGF and IGF-I, PDGF and EGF, PDGF and FGF, and IGF-I and EGF. In combination with IGF-I and FGF, TGF-β did not affect proliferation. TGF-β inhibited proliferation stimulated by the combination of PDGF, EGF, and IGF-I, but had no effect on proliferation stimulated by combinations of three growth factors that included FGF. FGF stimulated proliferation in Minimum Essential Medium containing 10% porcine serum (MEM-10% PS) by 13% above control. When the combination of TGF-β and FGF was added to MEM-10% PS, a 78% increase in proliferation was observed. Polyclonal antihuman PDGF-AB (this form neutralizes PDGF-AA, AB, and BB) reduced proliferation in MEM-10% PS by 44%. The combination of TGF-β and anti-PDGF-AB reduced proliferation by 59%, indicating the effects were not additive. These data indicate that: (1) FGF and TGF-β interact to increase proliferation of clonally derived porcine satellite cells, and (2) the inhibitory effect of TGF-β on proliferation of clonally derived porcine satelite cells can be primarily attributed to a reduction in the mitogenic effects of PDGF. © 1993 Wiley-Liss, Inc. 相似文献