首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the nicotinic acetylcholine receptor (AChR) channel were analysed in the presence of hydrocortisone (HC, 100-400 microM), an electrically neutral steroid. The channel open time decreased, and in contrast to control conditions did not show any voltage dependency. However, HC induced a new (blocked) component in the closed time distribution, with a time constant that decreased with membrane hyperpolarization. HC decreased also, in a concentration-dependent way, the open time per burst. After coupling HC to bovine serum albumin, to restrict the place of steroid action at the external surface of the membrane, a voltage dependency of steroid action persisted. The effects of HC on the open and blocked time constants did not depend on agonist concentration, but was dependent on the type of agonist used (acetylcholine or nicotine). These results support the hypothesis that HC molecules bind near the agonist binding site.  相似文献   

2.
The kinetics of the nicotinic acetylcholine receptor (AChR) channel were analysed in the presence of hydrocortisone (HC, 100-400 μM), an electrically neutral steroid. The channel open time decreased, and in contrast to control conditions did not show any voltage dependency. However, HC induced a new (blocked) component in the closed time distribution, with a time constant that decreased with membrane hyperpolarization. HC decreased also, in a concentration-dependent way, the open time per burst. After coupling HC to bovine serum albumin, to restrict the place of steroid action at the external surface of the membrane, a voltage dependency of steroid action persisted. The effects of HC on the open and blocked time constants did not depend on agonist concentration, but was dependent on the type of agonist used (acetylcholine or nicotine). These results support the hypothesis that HC molecules bind near the agonist binding site.  相似文献   

3.
Single-channel acetylcholine receptor kinetics.   总被引:3,自引:0,他引:3       下载免费PDF全文
The temporal relationships among junctional acetylcholine receptor single-channel currents have been examined to probe the mechanism of channel activation. We have presented an analytical approach, termed single-channel ensemble analysis, that allows one to estimate the kinetic transition rate constants for channel-opening and closing as well as the rate of leaving the specific doubly-liganded, closed state from which opening occurs. This approach may be applied to data produced by any number of independent channels as long as the probability of channel opening is low, a condition that is experimentally verifiable. The method has been independently validated using simulated single-channel data generated by computer from one or 100 hypothetical channels. Typical experimental values for the transition rate constants estimated from acetylcholine-activated single channels at the garter snake neuromuscular junction were: opening = 1,200 s-1, closing = 455 s-1, back rate for leaving the doubly-liganded, closed state = 3,200 s-1 at a transmembrane potential of -92 mV at room temperature. Each of these three rate constants was voltage dependent, with the closing rate decreasing e-fold for 173 mV of hyperpolarization, the opening rate increasing e-fold for 78 mV, and the unbinding rate increasing e-fold for 105 mV. The channel-closing rate was agonist dependent, being greater at all potentials for channels activated with carbamylcholine than for channels activated with acetylcholine. However, the single-channel conductance and reversal potential were the same for these two agonists.  相似文献   

4.
Previous analysis of single-channel current records has shown that both the opening and closing transitions of chemically activated ion channels are operated by fast and slow kinetic processes. The fast component in the kinetics of channel opening has been interpreted as the reopening of a channel that has just closed. The fast component in the kinetics of channel closure has many possible explanations and is therefore more difficult to interpret. We can gain insight into the closing process by asking whether the lifetimes of successive openings of an acetylcholine receptor channel are correlated in open-state lifetime. Five kinetic models of channel closure are considered. Two of these models predict uncorrelated open-state lifetimes, one predicts correlated open-state lifetimes, and for two others a range of behavior is possible. Acetylcholine receptor channel data from cultured rat muscle are analyzed to show that open-state lifetimes are correlated, eliminating two models of channel gating.  相似文献   

5.
The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+ -chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+ -chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of -25 mV in the channel, measured in low ionic strength, and -10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1-2 negative charges within 8 A of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with -3.3 charges within 8 A of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near -170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel.  相似文献   

6.
Calcium release in response to the activation of muscarinic M1 and histamine H1 receptors was studied in single N1E-115 cells using Fura-2 imaging. The objective was to relate changes in the kinetics of Ca release with reductions in functional receptor density resulting from receptor desensitization. Calcium release increased and its time course accelerated with increasing carbachol concentration with an EC50 = 96 ± 8 μM. This value is similar to the binding KD (100 μM) and the similarity shows that the activation of calcium release is limited by the number of muscarinic receptors. In contrast, the EC50 for Ca release in response to histamine is 4.0 ± 0.7 μM while the binding KD is 8.3 μM and, therefore, H1 receptors appear to be in approximately 2-fold excess over the minimum number necessary to fully engage the Ca release mechanism.Functional surface receptor number was assayed in the population of cells by counting the total number of cells responding to agonist. A 5 min exposure to 1 mM carbachol caused 12% of cells to lose their ability to respond to carbachol, with no change in their response to histamine. Interpolating from the dose-response curve taken before desensitization, this is equivalent to an average 23% reduction in the number of muscarinic receptors. In individual cells the latency to Ca release is dose-dependent in the absence of excess receptors. The loss of functional receptors was therefore estimated from the increase in latency after desensitization, and varied from 5–48% of receptors (22 ± 18%). Muscarinic desensitization did not depend on IP3-evoked Ca release, Ca entry, protein kinase C, NO, or cGMP. We conclude that in a population, the number of cells responding and in single cells, the latency to Ca release can serve as measures of functional receptor density.  相似文献   

7.
Interactions of the synthetic pyrethroid allethrin with the nicotinic acetylcholine (ACh) receptor/channel were studied in membranes from Torpedo electric organ. Allethrin did not inhibit binding of [3H]ACh to the receptor sites, but inhibited noncompetitively binding of [3H]perhydrohistrionicotoxin ([3H]H12-HTX) to the ionic channel sites in a dose-dependent manner. The inhibition constant (Ki) of [3H]H12-HTX binding in absence of receptor agonist was 30 micro M, while in presence of 100 micro M carbamylcholine it was 4 micro M. This inhibitory effect of allethrin had a negative temperature coefficient. The high affinity binding of allethrin to the channel sites of the nicotinic ACh-receptor may be indicative of a postsynaptic site of action for pyrethroids, in addition to their known action on the sodium channel.  相似文献   

8.
Kinetics of unliganded acetylcholine receptor channel gating.   总被引:9,自引:1,他引:9       下载免费PDF全文
Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant.  相似文献   

9.
The nicotinic acetylcholine receptor and its ion channel   总被引:9,自引:0,他引:9  
  相似文献   

10.
T M Fong  M G McNamee 《Biochemistry》1987,26(13):3871-3880
Fourier-transform infrared (FTIR) spectroscopy was used to study the secondary structure of purified Torpedo californica nicotinic acetylcholine receptor (AChR) in reconstituted membranes. Functional studies have previously demonstrated that the ion channel activity requires the presence of both sterol and negatively charged phospholipids in membranes. The present studies are designed to test the hypothesis that the alpha-helical structure of AChR may be stabilized by specific lipid molecules (sterol and/or negatively charged phospholipids) and that these alpha-helices may be responsible for the formation of a potential ion channel. FTIR data show statistically significant (p less than 0.005) spectral changes due to cholesterol and negatively charged phospholipids, respectively. On the basis of standard curves describing the relationship between the spectral properties and the secondary structural contents of water-soluble proteins, the observed spectral change at 931 cm-1 can be interpreted as an apparent change in the alpha-helix content from about 17% in the absence of sterols to about 20% in the presence of sterols, suggesting that protein-sterol interactions increase the helical structure of the AChR molecule. Similarly, the spectral change at 988 cm-1 can be interpreted as an apparent increase of beta-sheet content in the AChR molecule from about 20% to about 24% due to the presence of negatively charged phospholipids. Functional AChR in membranes thus appears to be correlated with higher alpha-helical and beta-sheet contents. It is concluded that one role of specific interactions between membrane protein and lipid molecules may be to maintain specific secondary structures necessary to support the ion channel function of AChR.  相似文献   

11.
Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and -100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential.  相似文献   

12.
Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse alpha-subunit 92-100) that links the beta4 and beta5 strands of the extracellular domain and that (in the alpha-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to alphaD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most alphaD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that alphaD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Phi = 0.93, which implies an open-like character at the transition state). alphaD97 mutations in the two alpha-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of alphaD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.  相似文献   

13.
R Horn 《Biophysical journal》1987,51(2):255-263
Methods are described for discrimination of models of the gating kinetics and permeation of single ionic channels. Both maximum likelihood and regression procedures are discussed. In simple situations, where models are nested, standard hypothesis tests can be used. More commonly, however, non-nested models are of interest, and several procedures are described for model discrimination in these cases, including Monte Carlo methods, which allow the comparison of models at significance levels of choice. As an illustration, the methods are applied to single-channel data from acetylcholine receptor channels.  相似文献   

14.
Multiple conductance states of the acetylcholine receptor channel complex   总被引:2,自引:0,他引:2  
The acetylcholine-activated channel of vertebrate skeletal muscle, as manifested in cultured, developing cells, is able to adopt more than one conductance state. This paper briefly reviews the evidence for such multiple conductance channels and presents results showing that the amplitude of subconductance states does not depend on agonist size and (or) valence. This seems to rule out the possibility that subconductances occur during partial occlusion of the channel (by agonist molecules) and supports the idea that subconductances represent discrete, allosterically activated channel conformations.  相似文献   

15.
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.  相似文献   

16.
We have investigated the effect of magnesium on the single-channel conductance of neuronal nicotinic acetylcholine receptors (nAChRs) in nerve growth-factor treated rat pheochromocytoma (PC12) cells. The patch-clamp technique was used to record single-channel currents from cell attached and excised, outside-out patches in the presence of various internal and external Mg2+ concentrations. Mg2+ reduced the single-channel conductance in a concentration-dependent manner with an IC50 of 9.2 mM for external Mg2+ (inward conductance) and 0.69 mM for external Mg2+ (outward conductance). Both estimated and measured conductances for divalent cation-free CsCl solutions were around 60 pS. We also find that divalent cations are not involved in the inward rectification of whole-cell ACh-induced currents in these cells. Our results imply that the amino acids screened by divalent cations sense electric fields only weakly and are presumably outside the lipid bilayer. They also suggest that the density and the number of charges (or both) differ on either side of the ion pore.  相似文献   

17.
Measurement of small-angle X-ray scattering from a sample of hyaluronic acid of high molecular weight in 0.05 m HNO3 gave persistence length plots which agreed in form with theory and led to apparent persistence lengths of from 4 to 6 nm. Similar measurements in 0.2 m NaCl gave plots which deviated somewhat in form from theoretical expectation, but which could be interpreted to give a persistence length of 4 nm in this solvent. Data for intrinsic viscosity [η] as a function of molecular weight were in reasonable agreement with the Yamakawa-Fujii treatment of [η] for the worm-like chain model for a persistence length of about 4 nm in both 0.5 m NaCl and 0.1 m HCl, perhaps slightly higher in the latter. The values of persistence length estimated from [η] depend somewhat on the choice of chain parameters and the method of correction of experimental data to unperturbed solvent conditions. Experimental data for the sedimentation coefficient, while less definitive, were consistent within experimental uncertainty with the same parameters of the worm-like chain model. These calculated results are in substantial agreement with the values derived from small-angle X-ray scattering. A fraction of hyaluronic acid of low molecular weight in 0.05 m HNO3 gave an estimated molecular weight of 2.7 × 104 and a radius of gyration of 8 nm, in reasonable agreement with expected values based on the worm-like chain model for a persistence length of about 4 nm.  相似文献   

18.
A time-dependent increase in ligand affinity has been studied in cholinergic ligand binding to Torpedocalifornica acetylcholine receptor by inhibition of the kinetics of of [125I]-alpha-bungarotoxin-receptor complex formation. The conversion of the acetylcholine receptor from low to high affinity form was induced by both agonists and antagonists of acetylcholine and was reversible upon removal of the ligand. The slow ligand induced affinity change in vitro resembled electrophysiological desensitization observed at the neuromuscular junction and described by a two-state model (Katz, B., & Thesleff, S. (1957) J. Physiol. 138, 63). A quantitative treatment of the rate and equilibrium constants determined for binding of the agonist carbamoylcholine to membrane bound acetylcholine receptor indicated that the two-state model is not compatible with the in vitro results.  相似文献   

19.
Single channel kinetics of a glutamate receptor.   总被引:1,自引:3,他引:1       下载免费PDF全文
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

20.
The acetylcholine receptor (AChR) is a cation selective channel whose biophysical properties as well as its molecular composition are fairly well characterized. Previous studies on the rat muscle alpha-subunit indicate that a threonine residue located near the cytoplasmic side of the M2 segment is a determinant of ion flow. We have studied the role of this threonine in ionic selectivity by measuring conductance sequences for monovalent alkali cations and bionic reversal potentials of the wild type (alpha beta gamma delta channel) and two mutant channels in which this threonine was replaced by either valine (alpha T264V) or glycine (alpha T264G). For the wild type channel we found the selectivity sequence Rb greater than Cs greater than K greater than Na. The alpha T264V mutant channel had the sequence Rb greater than K greater than Cs greater than Na. The alpha T264G mutant channel on the other hand had the same selectivity sequence as the wild type, but larger permeability ratios Px/PNa for the larger cations. Conductance concentration curves indicate that the effect of both mutations is to change both the maximum conductance as well as the apparent binding constant of the ions to the channel. A difference in Mg2+ sensitivity between wild-type and mutant channels, which is a consequence of the differences in ion binding, was also found. The present results suggest that alpha T264 form part of the selectivity filter of the AChR channel were large ions are selected according to their dehydrated size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号