首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the sequencing of a 2,019-bp region of the Streptococcus mutans NG5 genome which contains a 1,428-bp open reading frame (ORF) whose putative translation product had 50% identity to the amino acid sequences of the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenases (GAPN) from maize and pea. This ORF is located approximately 200 bp downstream of the ptsI gene coding for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase transport system. Mutant BCH150, in which the putative gapN gene had been inactivated, lacked GAPN activity that was present in the wild-type strain, thus positively identifying the ORF as the S. mutans gapN gene. Another strain of S. mutans, DC10, which contains an insertionally inactivated ptsI gene, still possessed GAPN activity, as did S. salivarius ATCC 25975, which contains an insertion element between the ptsI and gapN genes. Since the wild-type S. mutans NG5 lacks both glucose-6-phosphate dehydrogenase and NADH:NADP oxidoreductase activities, the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase is important as a means of generating NADPH for biosynthetic reactions.  相似文献   

2.
In the classical Embden-Meyerhof (EM) pathway for glycolysis, the conversion between glyceraldehyde 3-phosphate (GAP) and 3-phosphoglycerate (3-PGA) is reversibly catalysed by phosphorylating GAP dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK). In the Euryarchaeota Thermococcus kodakarensis and Pyrococcus furiosus, an additional gene encoding GAP:ferredoxin oxidoreductase (GAPOR) and a gene similar to non-phosphorylating GAP dehydrogenase (GAPN) are present. In order to determine the physiological roles of the three routes that link GAP and 3-PGA, we individually disrupted the GAPOR, GAPN, GAPDH and PGK genes (gor, gapN, gapDH and pgk respectively) of T. kodakarensis. The Δgor strain displayed no growth under glycolytic conditions, confirming its proposed function to generate reduced ferredoxin for energy generation in glycolysis. Surprisingly, ΔgapN cells also did not grow under glycolytic conditions, suggesting that GAPN plays a key role in providing NADPH under these conditions. Disruption of gor and gapN had no effect on gluconeogenic growth. Growth experiments with the ΔgapDH and Δpgk strains indicated that, unlike their counterparts in the classical EM pathway, GAPDH/PGK play a major role only in gluconeogenesis. Biochemical analyses indicated that T. kodakarensis GAPN did not recognize aldehyde substrates other than d-GAP, preferred NADP(+) as cofactor and was dramatically activated with glucose 1-phosphate.  相似文献   

3.
4.
5.
To clarify the deactivation mechanism of pyruvate formate-lyase (PFL) and its role in the regulation of fermentation in Streptococcus bovis, the molecular properties and genetic expression of multifunctional alcohol dehydrogenase (ADHE) were investigated. S. bovis was found to have ADHE, which was deduced to consist of 872 amino acids with a molecular mass of 97.4 kDa. The ADHE was shown to harbor three enzyme activities: (1) alcohol dehydrogenase, (2) coenzyme-A-linked acetaldehyde dehydrogenase that catalyzes the conversion of acetyl-CoA to ethanol, and (3) PFL deactivase. Similar to Escherichia coli ADHE, S. bovis ADHE required Fe2+ for its activity. The gene encoding ADHE ( adhE) was shown to be monocistronic. The level of adhE mRNA changed in parallel with the mRNA levels of the genes encoding PFL (pfl) and PFL-activating enzyme (act) as the growth conditions changed, although these genes are independently transcribed. Synthesis of ADHE, PFL-activating enzyme, and PFL appears to be regulated concomitantly. Overexpression of ADHE did not cause a change in the formate-to-lactate ratio. It is conceivable that ADHE is not significantly involved in the reversible inactivation of active PFL under anoxic conditions. Partition of the flow from pyruvate appears to be mainly regulated by the activities of lactate dehydrogenase and PFL.  相似文献   

6.
7.
To clarify the significance of the activation of pyruvate formate-lyase (PFL) by PFL-activating enzyme (PFL-AE) in Streptococcus bovis, the molecular properties and gene expression of PFL-AE were investigated. S. bovis PFL-AE was deduced to consist of 261 amino acids with a molecular mass of 29.9 kDa and appeared to be a monomer protein. Similar to Escherichia coli PFL-AE, S. bovis PFL-AE required Fe(2+) for activity. The gene encoding PFL-AE (act) was found to be polycistronic, and the PFL gene (pfl) was not included. However, the act mRNA level changed in parallel with the pfl mRNA level, responding to growth conditions, and the change was contrary to the change in the lactate dehydrogenase (LDH) mRNA level. PFL-AE synthesis appeared to change in parallel with PFL synthesis. Introduction of a recombinant plasmid containing S. bovis pfl and the pfl promoter into S. bovis did not affect formate and lactate production, which suggests that the activity of the pfl promoter is low. When the pfl promoter was replaced by the S. bovis ldh promoter, PFL was overexpressed, which caused an increase in the formate-to-lactate ratio. However, when PFL-AE was overexpressed, the formate-to-lactate ratio did not change, suggesting that PFL-AE was present at a level that was high enough to activate PFL. When both PFL-AE and PFL were overexpressed, the formate-to-lactate ratio further increased. It is conceivable that LDH activity is much higher than PFL activity, which may explain why the formate-to-lactate ratio is usually low.  相似文献   

8.
9.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

10.
Clostridium acetobutylicum gapN was cloned and expressed in Escherichia coli BL-21. The IPTG-induced nonphosphorylating NADP-dependent GAPDH (GAPN) has been purified about 34-fold from E. coli cells and its physical and kinetic properties were investigated. The purification method consisted of a rapid and straightforward procedure involving anion-exchange and hydroxyapatite chromatographies. The purified protein is an homotetrameric of 204kDa exhibiting absolute specificity for NADP. Chromatofocusing analysis showed the presence of only one acidic GAPN isoform with an acid isoelectric point of 4.2. The optimum pH of purified enzyme was 8.2. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 65 degrees C with activation energy of 18KJmol(-1). The apparent K(m) values for NADP and D-glyceraldehyde-3-phosphate (D-G3P) or DL-G3P were estimated to be 0.200+/-0.05 and 0.545+/-0.1 mM, respectively. No inhibition was observed with L-D3P. The V(max) of the purified protein was estimated to be 78.8 U mg(-1). The Cl. acetobutylicum GAPN was markedly inhibited by sulfhydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfhydryl groups in the catalytic activity.  相似文献   

11.
12.
13.
14.
To clarify the significance of the activation of pyruvate formate-lyase (PFL) by PFL-activating enzyme (PFL-AE) in Streptococcus bovis, the molecular properties and gene expression of PFL-AE were investigated. S. bovis PFL-AE was deduced to consist of 261 amino acids with a molecular mass of 29.9 kDa and appeared to be a monomer protein. Similar to Escherichia coli PFL-AE, S. bovis PFL-AE required Fe2+ for activity. The gene encoding PFL-AE (act) was found to be polycistronic, and the PFL gene (pfl) was not included. However, the act mRNA level changed in parallel with the pfl mRNA level, responding to growth conditions, and the change was contrary to the change in the lactate dehydrogenase (LDH) mRNA level. PFL-AE synthesis appeared to change in parallel with PFL synthesis. Introduction of a recombinant plasmid containing S. bovis pfl and the pfl promoter into S. bovis did not affect formate and lactate production, which suggests that the activity of the pfl promoter is low. When the pfl promoter was replaced by the S. bovis ldh promoter, PFL was overexpressed, which caused an increase in the formate-to-lactate ratio. However, when PFL-AE was overexpressed, the formate-to-lactate ratio did not change, suggesting that PFL-AE was present at a level that was high enough to activate PFL. When both PFL-AE and PFL were overexpressed, the formate-to-lactate ratio further increased. It is conceivable that LDH activity is much higher than PFL activity, which may explain why the formate-to-lactate ratio is usually low.  相似文献   

15.
The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of the hyperthermophilic Archaeum Thermoproteus tenax is a member of the superfamily of aldehyde dehydrogenases (ALDH). GAPN catalyses the irreversible oxidation of glyceraldehyde 3-phosphate (GAP) to 3-phosphoglycerate in the modified glycolytic pathway of this organism. In contrast to other members of the ALDH superfamily, GAPN from T.tenax (Tt-GAPN) is regulated by a number of intermediates and metabolites. In the NAD-dependent oxidation of GAP, glucose 1-phosphate, fructose 6-phosphate, AMP and ADP increase the affinity for the cosubstrate, whereas ATP, NADP, NADPH and NADH decrease it leaving, however, the catalytic rate virtually unaltered. As we show here, the enzyme also uses NADP as a cosubstrate, displaying, however, unusual discontinuous saturation kinetics indicating different cosubstrate affinities and/or reactivities of the four active sites of the protein tetramer caused by cooperative effects. Furthermore, in the NADP-dependent reaction the presence of activators decreases the overall S0.5 and increases Vmax by a factor of 3. To explore the structural basis for the different effects of both pyridine nucleotides we solved the crystal structure of Tt-GAPN in complex with NAD at 2.2 A resolution and compared it to the binary Tt-GAPN-NADPH structure. Although both pyridine nucleotides show a similar binding mode, NADPH appears to be more tightly bound to the protein via the 2' phosphate moiety. Moreover, we present four co-crystal structures with the activating molecules glucose 1-phosphate, fructose 6-phosphate, AMP and ADP determined at resolutions ranging from 2.3 A to 2.6 A. These crystal structures reveal a common regulatory site able to accommodate the different activators. A phosphate-binding pocket serves as an anchor point ensuring similar binding geometry. The observed conformational changes upon activator binding are discussed in terms of allosteric regulation. Furthermore, we present a crystal structure of Tt-GAPN in complex with the substrate D-GAP at 2.3 A resolution, which allows us to analyse the structural basis for substrate binding, the mechanism of catalysis as well as the stereoselectivity of the enzymatic reaction.  相似文献   

16.
In order to address the molecular basis of the specificity of aldehyde dehydrogenase for aldehyde substrates, enzymatic characterization of the glyceraldehyde 3-phosphate (G3P) binding site of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Streptococcus mutans has been undertaken. In this work, residues Arg-124, Tyr-170, Arg-301, and Arg-459 were changed by site-directed mutagenesis and the catalytic properties of GAPN mutants investigated. Changing Tyr-170 into phenylalanine induces no major effect on k(cat) and K(m) for d-G3P in both acylation and deacylation steps. Substitutions of Arg-124 and Arg-301 by leucine and Arg-459 by isoleucine led to distinct effects on K(m), on k(cat), or on both. The rate-limiting step of the R124L GAPN remains deacylation. Pre-steady-state analysis and substrate isotope measurements show that hydride transfer remains rate-determining in acylation. Only the apparent affinity for d-G3P is decreased in both acylation and deacylation steps. Substitution of Arg-459 by isoleucine leads to a drastic effect on the catalytic efficiency by a factor of 10(5). With this R459L GAPN, the rate-limiting step is prior to hydride transfer, and the K(m) of d-G3P is increased by at least 2 orders of magnitude. Binding of NADP leads to a time-dependent formation of a charge transfer transition at 333 nm between the pyridinium ring of NADP and the thiolate of Cys-302, which is not observed with the holo-wild type. Accessibility of Cys-302 is shown to be strongly decreased within the holostructure. The substitution of Arg-301 by leucine leads to an even more drastic effect with a change of the rate-limiting step similar to that observed for R459I GAPN. Taking into account the three-dimensional structure of GAPN from S. mutans and the data of the present study, it is proposed that 1) Tyr-170 is not essential for the catalytic event, 2) Arg-124 is only involved in stabilizing d-G3P binding via an interaction with the C-3 phosphate, and 3) Arg-301 and Arg-459 participate not only in d-G3P binding via interaction with C-3 phosphate but also in positioning efficiently d-G3P relative to Cys-302 within the ternary complex GAPN.NADP.d-G3P.  相似文献   

17.
18.
19.
NADP+ -dependent malic enzyme of Rhizobium meliloti.   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号