首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial β-oxidation of long-chain fatty acids (LCFA) is essential for mammalian life. Because portions of this metabolic pathway are composed of enzymes that are coordinately regulated and share structural and functional similarities, we evaluated five of these enzyme genes for possible chromosomal linkages. Regulation of LCFA catabolism influences cell signal pathways and apoptosis, as well as energy production from LCFA. Partial cDNA fragments of the mouse mitochondrial proteins carnitine acetyltransferase (Crat), very-long-chain acyl coenzyme A dehydrogenase (Acadvl), the liver and muscle isoforms of carnitine acyltransferase I (Cpt1a and Cpt1b respectively), and a genomic PCR product of mitochondrial protein carnitine acyltransferase II (Cpt2) were used in a previously established mapping panel to determine their chromosomal locations. No pseudogenes were detected for any of the genes in Mus musculus, and all of the genes mapped to different chromosome locations, including the tissue-specific isoforms of carnitine palmitoyltransferase. Crat mapped to Chromosome (Chr) 2, at a position approximately 18 cM from the centromere and 2 cM proximal to the gene Ass1. Acadvl mapped to the middle of Chr 11, 8.3 cM distal to Il4 and 2.8 cM proximal to Mpmv2. Cpt1a mapped to the centromeric region of Chr 19, 8.7 cM proximal to Pomc-ps1. Cpt1b mapped to Chr 15, 4.9 distal to Gpt1 and 3.5 cM proximal to Wnt1. Cpt2 mapped to Chr 4 near the locus Pmv19. Received: 29 January 1998 / Accepted: 25 March 1998  相似文献   

2.
The location of three mutations on proximal Chromosome (Chr) 18 was determined by analysis of the offspring of several backcrosses. The results demonstrate that ataxia and the insertional mutation TgN9257Mm are separated by less than 1 cM and are located approximately 3 cM from the centromere, while the balding locus is 7 cM more distal. Previous data demonstrated that the twirler locus also maps within 1 cM of ataxia. The corrected locations will contribute to identification of appropriate candidate genes for these mutations. Two polymorphic microsatellite markers for proximal Chr 18 are described, D18Umi1 and D18Umi2. The Lama3 locus encoding the α3 subunit of nicein was mapped distal to ataxia and did not recombine with Tg9257. Received: 19 December 1995 / Accepted: 29 January 1996  相似文献   

3.
1. 1. Immunochemical studies have shown that the major forms of troponin T present in fast skeletal, slow skeletal and cardiac muscles are different proteins.
2. 2. Similar studies indicate that the major form of troponin C present in fast skeletal muscles differs from troponin C present in slow skeletal and cardiac muscle cells. The forms of troponin C present in slow skeletal and cardiac muscles are immunochemically very similar.
3. 3. The antibodies to the polymorphic forms of troponin T and troponin C are specific for the muscle type, except in the case of the slow skeletal and cardiac muscle forms of troponin C.
4. 4. By the immunoperoxidase technique, it has been shown that the fast skeletal muscle troponin T is localized in type II cells and slow skeletal muscle troponin T in type I cells.
5. 5. Fast skeletal muscle troponin C is present in type II cells and a different troponin C, identified by its reaction with the antibody against cardiac troponin C, is present in type I cells.
6. 6. It is concluded that in normal adult skeletal muscle, fast muscle forms of troponin I, troponin T and troponin C are present together as a homocomplex in type II cells and the slow muscle forms exist as an analagous homocomplex in type I cells.
  相似文献   

4.
《Life sciences》1995,56(18):PL369-PL375
Opiate receptors are the primary targets for the drugs of abuse morphine and heroin. In this study, we completed the localization on mouse chromosomes of the genes encoding mu (Oprm) and kappa (Oprk) receptors, as well as the genes for the opioid propeptides proenkephalin (Penk) and prodynorphin (Pdyn). The genetic mapping was performed using a panel of DNA samples from an interspecific cross [C3H/HeJ-gld and (C3H/HeJ-gld x Mus spretus)Fi] that has been characterized for more than 800 markers throughout the genome. The genes are localized on mouse Chr 1 (Oprk, 10 cM from the centromere), Chr 2 (Pdyn, 75 cM from the centromere), Chr 4 (Penk, 1 cM from the centromere) and Chr 10 (Oprm, 10 cM from the centromere). Interestingly, the gene for the mu receptor is located in the same region as a Quantitative Trait Locus for high morphine consumption, thus raising the possibility of its direct role in drug abuse mechanisms.  相似文献   

5.
6.
Rbt (Rabo torcido) is a new semidominant mouse mutant with a variety of skeletal abnormalities. Heterozygous Rbt mutants display homeotic anteroposterior patterning problems along the axial skeleton that resemble Polycomb group and trithorax gene mutations. In addition, the Rbt mutant displays strong similarities to the phenotype observed in Ts (Tail-short), indicating also a homeotically transformed phenotype in these mice. We have mapped the Rbt locus to an interval of approximately 6 cM on mouse Chromosome (Chr) 11 between microsatellite markers D11Mit128 and D11Mit103. The Ts locus was mapped within a shorter interval of approximately 3 cM between D11Mit128 and D11Mit203. This indicates that Rbt and Ts may be allelic mutations. Sox9, the human homolog of which is responsible for the skeletal malformation syndrome campomelic dysplasia, was mapped proximal to D11Mit128. It is, therefore, unlikely that Ts and Rbt are mouse models for this human skeletal disorder. Received: 14 April 1996 / Accepted: 22 July 1996  相似文献   

7.
The genetic linkage map of sheep Chromosome (Chr) 6 has been extended to include 35 loci with the addition of 11 RFLP and 12 microsatellite loci. The sex-averaged linkage map now spans 154 cM from phosphodiesterase cyclic GMP beta polypeptide (PDE6B) to OarCP125, an anonymous sheep microsatellite. The male and female map lengths, at 180 cM and 132 cM respectively, did not differ significantly. The physical assignment of PDE6B to Chr 6q33-qter orientates the linkage map on sheep Chr 6 with PDE6B near the telomere and OarCP125 towards the centromere. The order and genetic distances between loci are similar for the sheep Chr 6 and cattle Chr 6 maps, except for the position of the casein genes. The sheep Chr 6 linkage map is also comparable to portions of human Chr 4, mouse Chrs 5 and 3, and pig Chr 8. The synteny between sheep Chr 6 and human Chr 4 has been extended from PDE6B (4p16.3) to epidermal growth factor (EGF, 4q25-q27). However, a region from platelet-derived growth factor receptor α polypeptide (PDGFRA) to bone morphogenetic protein 3 (BMP3), which spans 19 cM on sheep Chr 6, appears to be inverted with respect to the human and mouse loci. Other differences in the gene order between sheep, pig, and mouse suggest more complex rearrangements. Received: 16 August 1995 / Accepted: 12 December 1995  相似文献   

8.
Skinned fibers prepared from rabbit fast and slow skeletal and cardiac muscles showed acidotic depression of the Ca2+ sensitivity of force generation, in which the magnitude depends on muscle type in the order of cardiac>fast skeletal>slow skeletal. Using a method that displaces whole troponin-complex in myofibrils with excess troponin T, the roles of Tn subunits in the differential pH dependence of the Ca2+ sensitivity of striated muscle were investigated by exchanging endogenous troponin I and troponin C in rabbit skinned cardiac muscle fibres with all possible combinations of the corresponding isoforms expressed in rabbit fast and slow skeletal and cardiac muscles. In fibers exchanged with fast skeletal or cardiac troponin I, cardiac troponin C confers a higher sensitivity to acidic pH on the Ca2+ sensitive force generation than fast skeletal troponin C independently of the isoform of troponin I present. On the other hand, fibres exchanged with slow skeletal troponin I exhibit the highest resistance to acidic pH in combination with either isoform of troponin C. These results indicate that troponin C is a determinant of the differential pH sensitivity of fast skeletal and cardiac muscles, while troponin I is a determinant of the pH sensitivity of slow skeletal muscle.  相似文献   

9.
We have mapped the TNNC1 gene, whose protein product is the cardiac TnI protein. TnI is one of the proteins that makes up the troponin complex, which mediates the response of muscle to calcium ions. The human TNNC1 locus had been assigned to a large region of chromosome 19, and we have refined the mapping position to the distal end of the chromosome by amplification of DNAs from a chromosome 19 mapping panel. We have also mapped the mouse Tnnc1 locus, by following the segregation of an intron sequence through DNAs from the European Interspecific Backcross. Tnnc1 maps close to the centromere on mouse chromosome 7.  相似文献   

10.
A 5000-rad whole-genome radiation hybrid cell panel (BW5000) was developed for mapping the deer mouse (Peromyscus maniculatus bairdii) genome. The panel consists of 103 cell lines and has an estimated marker retention frequency of 63.9% (range, 28%–88%) based on PCR typing of 30 Type I (coding gene) and 25 Type II (microsatellite) markers. Using the composite Mus map, Type I markers were selected from six Mus chromosomes, 22 of which are on Mus Chr 11. Fifteen of the Mus Chr 11 markers were simultaneously mapped on an interspecific (P. maniculatus × P. polionotus) backcross panel to test the utility of the radiation hybrid panel, create a framework map, and help establish gene order. The radiation hybrids have effectively detected linkage in the deer mouse genome between markers as far apart as 6.7 cM and resolved markers that are, in the Mus genome, as close as 0.2 Mb. Combined results from both panels have indicated a high degree of gene order conservation of the telomeric 64 cM of Mus Chr 11 in the deer mouse genome. The remaining centromeric portion also shows gene order conservation with the deer mouse but as a separate linkage group. This indicates a translocation of that portion of Mus Chr 11 in P. maniculatus and is consistent with rearrangement breakpoints observed between Mus and other mammalian genomes, including rat and human. Furthermore, this separate linkage group is likely to reside in a chromosomal region of inversion polymorphism between P. maniculatus and P. polionotus.  相似文献   

11.
We present here the genetic mapping of two novel loci, D16Ros1 and D16Ros2, to mouse Chromosome (Chr) 16. The probes for these loci were genomic framents isolated from the chakragati mouse, a behavioural mutant resulting from insertional mutagenesis during the course of making transgenic mice. D16Ros1 and D16Ros2 were first mapped by recombinant inbred (RI) strain analysis and subsequently by the analysis of 145 progeny of two interspecific backcrosses between Mus domesticus and Mus spretus. These progeny had been typed for the centromere and this allowed mapping of D16Ros1 and D16Ros2 relative to the centromere. The other markers included in this study were Prm-1, Gap43 and Sod-1. The genetic map generated spanned 47.5 cM from the centromere to Sod-1, the most distal marker mapped here. The linkage data presented here should prove useful in mapping other loci relative to the centromere of Chr 16.  相似文献   

12.
The mouse ruby eye (ru) and pale ear (ep) pigment dilution genes cause platelet storage pool deficiency (SPD) and prolonged bleeding times. The brachymorphic (bm) gene, in addition to causing skeletal abnormalities, is also associated with prolonged bleeding times. All three hemorrhagic genes are found within 10 cM on Chromosome (Chr) 19. In this study, 15 microsatellite markers and five cDNAs, spanning 21 cM of Chr 19, were mapped in relation to the bm, ep, and ru genes in 457 progeny of an interspecific backcross utilizing the highly inbred strain PWK derived from the Mus musculus musculus species. Several markers were found to be closely linked to the three genes and should be useful as entry points in their eventual molecular identification.  相似文献   

13.
1. 1. Antibodies raised against troponin I isolated from human cardiac and rabbit fast and slow skeletal muscles have been shown to be specific for the polymorphic forms of troponin I against which they were raised, i.e. they are tissue specific.
2. 2. These antibodies reacted with the polymorphic forms of troponin I, against which they were raised, that are present in tissues of other species such as the rhesus monkey, hamster and rat, i.e. they were species non-specific.
3. 3. Using the immunoperoxidase staining technique it has been shown that the fast and slow forms of troponin I are located in different cells in virtually all adult normal muscles examined.
4. 4. By comparison of the ATPase staining of skeletal muscle sections at pH 9.4 and 4.2 it is concluded that the fast form of troponin I is located in type II fibres and the slow form in type I fibres.
5. 5. It is suggested that immunoperoxidase staining with the antibodies to the fast and slow forms of troponin I provides an unambiguous new method of muscle fibre typing.
  相似文献   

14.
The fit-1 locus was originally identified as a common insertion site for feline leukemia virus (FeLV) in thymic lymphosarcomas induced by FeLV-myc recombinant viruses, suggesting that it harbors a gene that cooperates with Myc in T-cell leukemogenesis. We have previously mapped the fit-1 locus to feline Chromosome (Chr) B2. We have now identified conserved sequences that allow the mapping of the murine homolog using the European Interspecific Backcross (EUCIB). This shows that fit-1 is located on mouse Chr 10, 1cM proximal to Ahi-1, a murine retroviral integration locus that is closely linked to Myb. Moreover, the physical linkage to MYB is maintained in the human genome, as shown by cloning of the human homolog of fit-1 from a Chr 6 cosmid library and a series of overlapping PAC clones. Generation of a contig map around the human homolog of fit-1 reveals that it is approximately 100-kb upstream of MYB. In addition to fit-1 and Ahi-1, two other common insertion sites, Mis-2 and Mml-1, have also been mapped adjacent to Myb on mouse Chr 10. Previous analysis of tumors carrying insertions at fit-1, Mml-1, Mis-2 and Ahi-1 showed no obvious abnormalities in Myb expression. However, the cluster of viral insertion loci in this region suggests either the presence of a closely linked activation target or that subtle effects on Myb have been overlooked. Received: 9 October 1998 / Accepted: 12 January 1999  相似文献   

15.
Although the phenomenon of innate resistance to flaviviruses in mice was recognized many years ago, it was only recently that the genetic locus (Flv) controlling this resistance was mapped to mouse Chromosome (Chr) 5. Here we report the fine mapping of the Flv locus, using 12 microsatellite markers which have recently been developed for mouse Chr 5. The new markers were genotyped in 325 backcross mice of both (C3H/HeJxC3H/ RV)F1xC3H/HeJ and (BALB/cxC3H/RV)F1xBALB/c backgrounds, relative to Flv. The composite genetic map that has been constructed identifies three novel microsatellite loci, D5Mit68, D5Mit159, and D5Mit242, tightly linked to the Flv locus. One of those loci, D5Mit159, showed no recombinations with Flv in any of the backcross mice analyzed, indicating tight linkage (<0.3 cM). The other two, D5Mit68 and D5Mit242, exhibited two and one recombinations with Flv (0.6 and 0.3 cM) respectively, defining the proximal and distal boundaries of a 0.9-cM segment around this locus. The proximal flanking marker, D5Mit68, maps to a segment on mouse Chr 5 homologous to human Chr 4. This, together with the previous data produced by our group, locates Flv to a region on mouse Chr 5 carrying segments that are conserved on either human Chr 4, 12, or 7, but present knowledge does not allow precise identification of the syntenic element.  相似文献   

16.
Mullen AJ  Barton PJ 《Gene》2000,242(1-2):313-320
Three troponin I genes have been identified in vertebrates that encode the isoforms expressed in adult cardiac muscle (TNNI3), slow skeletal muscle (TNNI1) and fast skeletal muscle (TNNI2), respectively. While the organization and regulation of human cardiac and slow skeletal muscle genes have been investigated in detail, the fast skeletal troponin I gene has to date only been examined in birds. Here, we describe the structure and complete sequence of the human fast skeletal muscle troponin I gene (TNNI2) and identify putative regulatory elements within both the 5' flanking region and the first intron. In particular, a region containing MEF-2, E-box, CCAC and CAGG elements was identified in intron 1 that closely resembles the fast internal regulatory element (FIRE) of the quail intronic enhancer. We have previously shown that the fast skeletal muscle troponin I gene is located at 11p15.5 and noted potential close linkage with the fast skeletal muscle troponin T gene (TNNT3). Here, we have isolated two independent human PAC genomic clones that contain either TNNI2 or TNNT3 and demonstrate by interphase FISH mapping that they are less than 100 kb apart in the genome. The results demonstrate that the human TNNI2 gene is closely related to its avian counterparts with conserved elements within both the putative promoter and first intron. Our data further confirm close physical linkage of TNNI2 and TNNI3 on 11p15.5.  相似文献   

17.
The loss of slow skeletal muscle troponin T (TnT) results in a recessive nemaline myopathy in the Amish featured with lethal respiratory failure. The genes encoding slow TnT and cardiac troponin I (TnI) are closely linked. Ex vivo promoter analysis suggested that the 5′-enhancer region of the slow TnT gene overlaps with the structure of the upstream cardiac TnI gene. Using transgenic expression of exogenous cardiac TnI to rescue the postnatal lethality of a mouse line in which the entire cardiac TnI gene was deleted, we investigated the effect of enhancer deletion on slow TnT gene expression in vivo and functional consequences. The levels of slow TnT mRNA and protein were significantly reduced in the diaphragm muscle of adult double transgenic mice. The slow TnT-deficient (ssTnT-KD) diaphragm muscle exhibited atrophy and decreased ratios of slow versus fast isoforms of TnT, TnI, and myosin. Consistent with the changes toward more fast myofilament contents, ssTnT-KD diaphragm muscle required stimulation at higher frequency for optimal tetanic force production. The ssTnT-KD diaphragm muscle also exhibited significantly reduced fatigue tolerance, showing faster and more declines of force with slower and less recovery from fatigue as compared with the wild type controls. The natural switch to more slow fiber contents during aging was partially blunted in the ssTnT-KD skeletal muscle. The data demonstrated a critical role of slow TnT in diaphragm function and in the pathogenesis and pathophysiology of Amish nemaline myopathy.  相似文献   

18.
Recent evidence suggests that the human neuromuscular disorders, hyperkalemic periodic paralysis and paramyotonia congenita, are both caused by genetic defects in the -subunit of the adult skeletal muscle sodium channel, which maps near the growth hormone cluster (GH) on Chromosome (Chr) 17q. In view of the extensive homology between this human chromosome and mouse Chr 11, we typed an interspecies backcross to determine whether the murine homolog (Scn4a) of this sodium channel gene mapped within the conserved chromosomal segment. The cytosolic thymidine kinase gene, Tk-1, was also positioned on the genetic map of Chr 11. Both Scn4a and Tk-1 showed clear linkage to mouse Chr 11 loci previously typed in this backcross, yielding the map order: Tr J-(Re, Hox-2, Krt-1)-Scn4a-Tk-1. No mouse mutant that could be considered a model of either hyperkalemic periodic paralysis or paramyotonia congenita has been mapped to the appropriate region of mouse Chr 11. These data incorporate an additional locus into the already considerable degree of homology observed for these human and mouse chromosomes. These data are also consistent with the view that the conserved segment region may extend to the telomere on mouse Chr 11 and on human 17q.  相似文献   

19.
Using both chromosomal in situ hybridization and molecular techniques, we report the genetic localization of the gene coding for the alpha 1 subunit of the skeletal slow Ca2+ current channel/DHP receptor gene (Cchl1a3) on human Chromosome (Chr) 1 (1q31–1q32 region) and on mouse Chr 1 region (F-G). On the basis of single-strand conformation polymorphism (SSCP-PCR) analysis in an interspecific backcross, we have determined that the Cchl1a3=mdg (muscular dysgenesis) locus is very closely linked to the myogenin (Myog) locus.  相似文献   

20.
We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N-terminal putative mitochondrial transit peptide, and expression of a full-length ClpX cDNA tagged at its C-terminus (Myc-His) shows that the polypeptide is transported into mitochondria. FISH analysis localized the CLPX gene to human Chromosome (Chr) 15q22.1-22.32. This localization was refined by radiation hybrid mapping placing the CLPX gene 4.6 cR distal to D15S159. Murine ClpX cDNA was sequenced, and the mouse Clpx locus was mapped to a position between 31 and 42 cM offset from the centromere on mouse Chr 9. Experimental observations indicate the presence of a pseudogene in the mouse genome and sequence variability between mouse ClpX cDNAs from different strains. Alignment of the human and mouse ClpX amino acid sequences with ClpX sequences from other organisms shows that they display the typical modular organization of domains with one AAA+ domain common to a large group of ATPases and several other domains conserved in ClpX orthologs linked by non-conserved sequences. Notably, a C-4 zinc finger type motif is recognized in human and mouse ClpX. This motif of so far unknown function is present only in a subset of the known ClpX sequences. Received: 5 April 2000 / Accepted: 14 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号