首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A visual method for the selective screening of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and laccase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.  相似文献   

2.
Screening for novel laccase-producing microbes   总被引:4,自引:0,他引:4  
AIMS: To discover novel laccases potential for industrial applications. METHODS AND RESULTS: Fungi were cultivated on solid media containing indicator compounds that enabled the detection of laccases as specific colour reactions. The indicators used were Remazol Brilliant Blue R (RBBR), Poly R-478, guaiacol and tannic acid. The screening work resulted in isolation of 26 positive fungal strains. Liquid cultivations of positive strains confirmed that four efficient laccase producers were found in the screening. Biochemical characteristics of the four novel laccases were typical for fungal laccases in terms of molecular weight, pH optima and pI. The laccases showed good thermal stability at 60 degrees C. CONCLUSIONS: Plate-test screening based on polymeric dye compounds, guaiacol and tannic acid is an efficient way to discover novel laccase producers. The results indicated that screening for laccase activity can be performed with guaiacol and RBBR or Poly R-478. SIGNIFICANCE AND IMPACT OF THE STUDY: Laccases have many potential industrial applications including textile dye decolourization, delignification of pulp and effluent detoxification. It is essential to find novel, efficient enzymes to further develop these applications. This study showed that relatively simple plate test screening method can be used for discovery of novel laccases.  相似文献   

3.
During solid-state fermentation of wheat straw, a natural lignocellulosic substrate, the white rot fungus Pleurotus ostreatus produced an extracellular H2O2-requiring Remazol brilliant blue R (RBBR)-decolorizing enzymatic activity along with manganese peroxidase, manganese-independent peroxidase, and phenol oxidase activities. The presence of RBBR was not essential for the production of RBBR-decolorizing enzymatic activity by P. ostreatus, because this activity was also produced in the absence of RBBR. This RBBR-decolorizing enzymatic activity in crude enzyme preparations of 14- and 20-day-old cultures exhibited an apparent Km for RBBR of 31 and 52 microM, respectively. The RBBR-decolorizing enzyme activity was maximal in the pH range 3.5 to 4.0. This activity was independent of manganese, and veratryl alcohol had no influence on it. Manganese peroxidase of P. ostreatus did not decolorize RBBR. This H2O2-dependent RBBR-decolorizing enzymatic activity behaved like an oxygenase possessing a catalytic metal center, perhaps heme, because it was inhibited by Na2S2O5, NaCN, NaN3, and depletion of dissolved oxygen. Na2S2O5 brought an early end to the reaction without interfering with the initial reaction rate of RBBR oxygenase. The activity was also inhibited by cysteine. Concentrations of H2O2 higher than 154 microM were observed to be inhibitory as well. Decolorization of RBBR by P. ostreatus is an oxidative process.  相似文献   

4.
The rate and efficiency of decolorization of poly R-478- or Remazol Brilliant Blue R (RBBR)-containing agar plates (200 μg g−1) were tested to evaluate the dye degradation activity in a total of 103 wood-rotting fungal strains. Best strains were able to completely decolorize plates within 10 days at 28 °C. Irpex lacteus and Pleurotus ostreatus were selected and used for degradation of six different groups of dyes (azo, diazo, anthraquinone-based, heterocyclic, triphenylmethane, phthalocyanine) on agar plates. Both fungi efficiently degraded dyes from all groups. Removal of RBBR, Bromophenol blue, Cu-phthalocyanine, Methyl red and Congo red was studied with I. lacteus also in liquid medium. Within 14 days, the following color reductions were attained: RBBR 93%, Bromophenol blue 100%, Cu-phthalocyanine 98%, Methyl red 56%, Congo red 58%. The ability of I. lacteus to degrade RBBR spiked into sterile soil was checked, the removal being 77% of the dye added within 6 weeks. The capacity of selected white rot fungal species to remove efficiently diverse synthetic dyes from water and soil environments is documented.  相似文献   

5.
Lignin peroxidase (LiP) produced by Trametes versicolor decolorizes Remazol Brilliant Blue R (RBBR) in the presence as well as in the absence of veratryl alcohol (VA). VA enhances and stabilizes the RBBR-decolorization rates by lignin peroxidase. RBBR has better substrate reactivity than VA for LiP. RBBR is also decolorized directly by LiP and competitively inhibits VA oxidation by LiP. In the presence of higher concentrations of RBBR (i) RBBR decolorization rates improve, (ii) veratryl aldehyde appears after a lag and (iii) VA oxidation rates decrease. The lag is due to consumption of VA cation radical (VA+) generated upon LiP-catalyzed VA oxidation, during RBBR oxidation. That may result in the formation of compound III in the absence of VA+ and contributes to the inhibitory influence of RBBR on LiP activity.  相似文献   

6.
The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860?±?250 U/L), pineapple peel (2,450?±?230 U/L), and orange bagasse (2,100?±?270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200?±?205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80–90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50–70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity.  相似文献   

7.
Remazol brilliant blue R (RBBR) is an anthraquinone dye derived from anthracene that is decolorized by a white rot fungus, Phlebia brevispora. Interestingly, P. brevispora produces two phenomena of yellowish and pinkish colors during the degradation of RBBR. Here, we characterized the decolorization of RBBR by P. brevispora. The fungus was significantly different between the two colors via UV spectrophotometry, and the morphology of the hyphae observed in the respective color culture was also entirely different. Moreover, both of the two ligninolytic enzymes, laccase and manganese‐dependent peroxidase (MnP), were remarkably stimulated in the yellowish culture at the beginning of the decolorization. It is possible that the RBBR decolorizing mechanism might be primarily related to the amount of laccase and MnP produced in the yellowish culture. Thus, the decolorized color may be rapidly estimated at initial period of incubation. In addition, GeneFishing technology revealed that two genes were differentially expressed in yellowish culture.  相似文献   

8.
A peroxidase assay method (Mini assay method) which is applicable for a minute amount (as small as a few mg) of thyroid tissue was developed, employing guaiacol or iodide as the second substrate. This method is a modification of the previous one (Ordinary assay method): the volume of the reaction mixture was reduced to about one-tenth with prior solubilization of the enzyme. The correlation between the Mini assay and Ordinary assay methods, and between the guaiacol and iodide assays by both methods were satisfactorily good, but the iodine content of thyroglobulin was found to be not directly correlated to the peroxidase activities. Protein-based specific activities of peroxidase from normal human thyroid tissue were about 0.030 guaiacol units/mg protein and 0.0066 iodide units/mg protein, which were slightly higher than those of porcine thyroid tissue. The Mini assay method developed in the present study was used for the determination of peroxidase activity in a small amount (1-8 mg) of thyroid tissue obtained by means of a needle biopsy from patients with thyroid disorders. One specimen (goitrous cretinism) showed no peroxidase activity in both the guaiacol and iodide assays, and three specimens (two chronic thyroiditis, one familial nontoxic goiter) possessed no ability to catalyze the oxidation of iodide in spite of the high reactivity towards guaiacol, suggesting the presence of an abnormal peroxidase in these tissues.  相似文献   

9.
Ascorbate (AsA) peroxidase can be inactivated both by p-chloromercuribenzoateand by the depletion of AsA but guaiacol peroxidases, such ashorseradish peroxidase, cannot. The cytosolic isozymes of AsAperoxidase are less sensitive to depletion of AsA than the chloroplasticisozymes, which include stromal [Chen and Asada (1989) PlantCell Physiol. 30: 987] and thyla-koid-bound [Miyake and Asada(1992) Plant Cell Physiol. 33: 541] enzymes. Exploring theseproperties, we established simple methods for separate assaysof AsA peroxidase and guaiacol peroxidase and of the three isozymesof AsA peroxidase in plant extracts. These methods were usedto characterize the guaiacol peroxidases and isozymes of AsAperoxidase in plants and algae. (Received October 20, 1993; Accepted February 7, 1994)  相似文献   

10.
In this study crude laccases from the white‐rot fungi Cerrena unicolor and Trametes hirsuta were tested for their ability to decolorize simulated textile dye baths. The dyes used were Remazol Brilliant Blue R (RBBR) (100 mg/L), Congo Red (12.5 mg/L), Lanaset Grey (75 mg/L) and Poly R‐478 (50 mg/L). The effect of redox mediators on dye decolorization by laccases was also assessed. C. unicolor laccase was able to decolorize all the dyes tested. It was especially effective towards Congo Red and RBBR with 91 and 80% of color removal in 19.5 h despite the fact that simulated textile dye baths were used. Also Poly R‐478 and Lanaset Grey were partially decolorized (69 and 48%, respectively). C. unicolor laccase did not need any mediators for removing the dyes. However, T. hirsuta laccase was only able to decolorize simulated Congo Red and RBBR dye baths (91 and 45%, respectively) in 19.5 h without mediators. When using mediators the decolorization capability was enhanced substantially, e.g. Poly R‐478 was decolorized by 78% in 25.5 h. On the whole, both laccases showed potential to be used in industrial applications.  相似文献   

11.
Kim JE  Wang CJ  Bollag JM 《Biodegradation》1997,8(6):387-392
The herbicide bentazon (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3 H)-one-2,2-dioxide), a relatively inert chemical, and some of its metabolites were incubated with a laccase or a peroxidase in the presence or absence of humic monomers to evaluate the incorporation of the herbicide and its metabolites into humic material by oxidative enzymes. Guaiacol and ferulic acid were used as representative electron donor co-substrates in most of the oxidative coupling reactions. Bentazon and its metabolites, with the exception of hydroxy metabolites, underwent little or no transformation by the two enzymes in the absence of guaiacol and ferulic acid,but in the presence of these co-substrates transformation occurred. The reaction of bentazon with guaiacol in the presence of the laccase or a peroxidase was almost complete in30 min. 6-Hydroxy- and 8-hydroxy-bentazon were completely transformed by each enzyme both with and with out co-substrates. At pH 3.0 and in the presence of laccase and guaiacol, the concentrations of bentazon and its metabolites2-amino-N-isopropyl-benzamide (AIBA), des-isopropyl-bentazon and 8-chloro-bentazon decreased by 27, 57, 20 and 4%,respectively. The corresponding levels of transformation with peroxidase at pH 3.0 were 9, 70, 30 and 5%, respectively. The extent of transformation decreased with increasing pH. At low pH, the hydroxy-bentazons were completely transformed,followed by (in order of percentage transformation) AIBA,des-isopropyl-bentazon, bentazon and 8-chloro-bentazon. Transformation of bentazon by the laccase increased with increasing guaiacol concentration. In the presence of the peroxidase, the most effective co-substrates for transformation of bentazon were (in decreasing order) catechol, vanillicacid, protocatechuic acid, syring aldehyde and caffeic acid,while in the presence of the laccase, catechol was most effective, followed by caffeic acid, protocatechuic acid and syringaldehyde. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Biological decolorization of the synthetic dye RBBR in contaminated soil   总被引:1,自引:0,他引:1  
Soil contaminated with the synthetic dye Remazol Brilliant Blue R (RBBR) was treated independently with the wheat straw-grown white rot fungus Irpex lacteus, a bacterial consortium isolated from a dye-polluted soil and a coculture comprising both I. lacteus and the bacterial consortium. Both I. lacteus and the coculture removed RBBR (decrease in absorbance at 578 nm) gradually during a 49-day incubation time to 76 and 78%, respectively. The bacterial consortium alone, however, decolorized RBBR starting after 14 days with a final RBBR removal of 89%. Using controls with heat-killed cultures almost no decolorization occurred. The decolorization by the coculture did not show an increased RBBR removal as compared to the individual cultures. This might be explained by the observation that I. lacteus inhibited growth of the bacterial consortium.  相似文献   

13.
Laccase has been proved important in decolorization of Remazol Brilliant Blue R (RBBR), oxidation of 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, lignin degradation and fruiting-body formation. The decolorization of RBBR by laccase was firstly used to screen protoplast fusants. Fusants were obtained by protoplast fusion between the strains of Hypsizigus marmoreus and Clitocybe maxima, and two fusants (IM1 and IIIM5) were screened on PDA medium containing RBBR. These fusants were significant higher in laccase activity than H. marmoreus, nearly 413 and 395 times, respectively. Their hyphal growth rates were also remarkable higher than H. marmoreus, nearly 1.5 and 1.4 times, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed these fusants contained the laccase, and the molecular mass of the laccase was consistent with the laccase of C. maxima, nearly 62 kDa. The pileus color of the IM1 and IIIM5 also showed partial recombined characteristics comparing to the parental strains, while biological efficiency ratios were prominent higher than that of H. marmoreus, up to 14.58 and 10.87 %, respectively. Randomly amplified polymorphic DNA bands of fusants not only were similar to parental bands, but presented new non-parental bands. Using the Unweighted pair-group method together with mathematic averages method to gain a dendrogram, in which the fusants showed intra-cluster variations. Significantly, H. marmoreus was the dominant parent, while C. maxima were distant from the fusants. The differences among IM1, IIIM5 and H. marmoreus, and the similarities among IM1, IIIM5 and C. maxima indicated IM1 and IIIM5 were somatic hybrids of H. marmoreus and C. maxima. Accordingly, it is feasible to use laccase to screen fusants of H. marmoreus and C. maxima.  相似文献   

14.
The kinetic and spectral properties of peroxidases A and B from the dwarf tomato plant were compared. The absolute absorption spectra were essentially the same for peroxidases A and B and their derivatives. Peroxidases A and B had different pH optima with guaiacol as the hydrogen donor but essentially the same optimum when pyrogallol was the substrate. The substrate concentrations required for optimum activity were different not only for the different substrates but also for each isoenzyme. When pyrogallol was used as the substrate, peroxidases A and B were 80% active when assayed under conditions optimal for the other isoenzyme. When guaiacol was used as the substrate, peroxidase A was completely inactive when assayed under conditions optimal for peroxidase B. In this case the pH was not optimum and the H2O2 concentration was inhibitory. Similarly, peroxidase B retained only 9% of its peroxidase activity toward guaiacol when assayed under conditions optimum for peroxidase A. In this case the pH was not optimum and the H2O2 was limiting. A possible role for peroxidase isoenzymes is discussed.  相似文献   

15.
Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2''-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0–11.0 and thermostable at 40°C–90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.  相似文献   

16.
The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.  相似文献   

17.
A recombinant dye-decolorizing peroxidase (rDyP) produced from Aspergillus oryzae was immobilized in synthesized silica-based mesocellular foam (MCF: average pore size 25 nm) and used for decolorization of the anthraquinone dye, Remazol Brilliant Blue R (RBBR). The adsorption yields of rDyP immobilized in MCF increased as the pH decreased from 6 to 3. However, the activity yields of the immobilized rDyP decreased with decreasing pH. The overall efficiency, defined as adsorption yield × activity yield, reached its maximum of 83% at pH 5. In repeated dye-decolorization tests, 20 batches of RBBR could be decolorized by the MCF-immobilized rDyP. MCF showed significantly better performance for rDyP immobilization in term of retaining enzyme activity and dye-decolorization ability compared to previous studies using other mesoporous materials.  相似文献   

18.
Climacteric fruit ripening has been characterized by oxidative burst and involve active oxidative metabolism with generation of reactive oxygen species (ROS). In the present paper, the papaya fruit ripening was found to be associated with increase in polygalacturonase (PG), pectate lyase (PEL), catalase (CAT), ascorbate peroxidase (APX), H2O2 and lipid peroxidation concomitant with decrease in the activities of superoxide dismutase (SOD) and guaiacol peroxidase (GPX). Furthermore, a cDNA (903 bp) of GPX from unripe papaya fruit pulp was isolated and cloned. On BLAST analysis, the deduced protein exhibited homology with various peroxidases and specific hits for plant heme peroxidase family namely heme and calcium binding domains. GPX of papaya was modeled and docked with various substrates and inhibitors among which guaiacol and cysteine were found to be the best substrate and inhibitor, respectively.  相似文献   

19.
Peroxidase activity was partially purified from neonatal (3 to 6 days old) rat skin. The membrane-bound peroxidase activity was extracted with 0.5 M calcium chloride and was monitored spectrophotometrically at 470 nm with 2-methoxyphenol (guaiacol) and hydrogen peroxide as substrates. Subcellular distribution studies indicated the activity to be highest and comparable in nuclei and mitochondria, lowest in microsomes, and absent in cytosol. The peroxidase activity was partially purified by affinity chromatography on concanavalin A-sepharose 4B and by gel filtration using Bio-Gel P-150. Purification factors from these two steps were about 25 and 4, respectively. Peroxidase extraction in the presence of 2 mM N-ethylmaleimide increased activity about twofold. The combination of 2 mM N-ethylmaleimide and 10% (w/v) glycerol was found to be optimal for preservation of activity. Peroxidase activity increased linearly with increases in protein concentration, time, and guaiacol concentration. Activity was inhibited approximately 75% by 0.1 mM potassium cyanide or 0.05 mM sodium azide. Pyrogallol, hydroquinone, p-cresol, catechol, benzidine, 3,3'-dimethoxybenzidine, tetramethylbenzidine and p-phenylenediamine also acted as substrates for the rat cutaneous peroxidase.  相似文献   

20.
In the present study laccase production potential of a photosynthetic, non nitrogen fixing cyanobacteria Arthrospira maxima (SAE-25780) was investigated for their probable use in synthetic dye decolorization which poses environmental pollution problem in aquatic bodies. A. maxima (SAE-25780) showed a constitutive production of laccase which increased up to 80% in the presence of inducer guaiacol. The optimal condition for laccase was 30 °C, 10 mM sucrose as a carbon source, 10 mM sodium nitrate as a nitrogen source, and 2 mM copper as metal activator. The partially purified laccase showed 84% and 49% decolorization potential for the two anthroquinonic dyes-Reactive Blue 4 and Remazol Brilliant Blue R, respectively (RBBR) within 96 h without any mediator. Therefore the laccase extracted from A. maxima (SAE-25780) can be used efficiently in bioremediation of synthetic dyes from paper, pulp and textile industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号