首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemotactic signaling in filamentous cells of Escherichia coli.   总被引:8,自引:10,他引:8       下载免费PDF全文
Video techniques were used to record chemotactic responses of filamentous cells of Escherichia coli stimulated iontophoretically with aspartate. Long, nonseptate cells were produced from polyhook strains either by introducing a cell division mutation or by growth in the presence of cephalexin. Markers indicating rotation of flagellar motors were attached with anti-hook antibodies. Aspartate was applied by iontophoretic ejection from a micropipette, and the effects on the direction of rotation of the markers were measured. Motors near the pipette responded, whereas those sufficiently far away did not, even when the pipette was near the cell surface. The response of a given motor decreased as the pipette was moved away, but it did so less steeply when the pipette remained near the cell surface than when it was moved out into the external medium. This shows that there is an internal signal, but its range is short, only a few micrometers. These experiments rule out signaling by changes in membrane potential, by simple release or binding of a small molecule, or by diffusion of the receptor-attractant complex. A likely candidate for the signal is a protein or ligand that is activated by the receptor and inactivated as it diffuses through the cytoplasm. The range of the signal was found to be substantially longer in a cheZ mutant, suggesting that the product of the cheZ gene contributes to this inactivation.  相似文献   

2.
Coordination of flagella on filamentous cells of Escherichia coli.   总被引:5,自引:7,他引:5  
Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range.  相似文献   

3.
Negative chemotaxis in Escherichia coli   总被引:27,自引:44,他引:27  
Several methods for detecting or measuring negative chemotaxis are described. Using these, we have surveyed a number of chemicals for their ability to repel Escherichia coli. Although most of the repellents are harmful compounds, harmfulness is neither necessary nor sufficient to make a compound a repellent. The repellents can be grouped into at least nine classes according to (i) competition experiments, (ii) mutants lacking certain of the negative taxes, and (iii) their chemical structure. The specificity of each class was studied. It is suggested that each class corresponds to a distinct chemoreceptor. Generally, non-chemotactic mutants lack both positive and negative chemotaxis, and l-methionine is required for both kinds of taxis. Repellents at very low concentrations are not attractants, and attractants at very high concentrations are not repellents.  相似文献   

4.
Background

Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however.

Results

A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil.

Conclusions

Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium.

  相似文献   

5.
6.
Eight Escherichia coli strains were studied in minimal medium with a continuous flow system using confocal microscopy. K12 wild-type strains ATCC 25404 and MG1655 formed the best biofilms (∼43 μm thick, 21 to 34% surface coverage). JM109, DH5α, and MG1655 motA formed intermediate biofilms (∼13 μm thick, 41 to 58% surface coverage). BW25113, MG1655 qseB, and MG1655 fliA had poor biofilms (surface coverage less than 5%). The best biofilm-formers, ATCC 25404 and MG1655, displayed the highest motility, whereas the worst biofilm former, BW25113, was motility-impaired. The differences in motility were due to differences in expression of the motility loci qseB, flhD, fliA, fliC, and motA (e.g., qseB expression in MG1655 was 139-fold higher than BW25113 and 209-fold higher than JM109). Motility affected the biofilm architecture as those strains which had poor motility (E. coli JM109, E. coli MG1655 motA, and DH5α) formed flatter microcolonies compared with MG1655 and ATCC 25404, which had more dramatic vertical structures as a result of their enhanced motility. The presence of flagella was also found to be important as qseB and fliA mutants (which lack flagella) had less biofilm than the isogenic paralyzed motA strain (threefold less thickness and 15-fold less surface coverage).  相似文献   

7.
Though acetylcholine per se was not attractant or repellent for Escherichia coli, it was found that acetylcholine inhibits the chemotaxis of the bacteria for aspartate. The inhibition appeared at 10(-5) M of acetylcholine and at 10(-2) M the inhibition reached 50%.  相似文献   

8.
Leucine concentration jumps (applied by photolysis of inert derivatives) triggered swim or tumble responses in Escherichia coli mutants lacking Tsr or Tar, respectively. Wild-type E. coli bacteria were attracted in spatial assays when the initial leucine concentration difference was 5 to 120 micro M but were repulsed when it was over 0.5 mM. Their responses to concentration jumps confirmed earlier deductions regarding biphasic excitation.  相似文献   

9.
10.
Fatty acid distribution in normal and filamentous Escherichia coli.   总被引:6,自引:2,他引:4  
  相似文献   

11.
Both the beta-lactam antibiotic, cephalexin, and the deoxyribonucleic acid synthesis inhibitor, nalidixic acid, are known to inhibit cell division in Escherichia coli and induce the formation of filaments. The biosynthesis of murein was investigated in these filaments and compared with the murein synthesized by the normally dividing rods of E. coli PAT 84. Differences were found in the extent of peptide side-chain cross-linkage. Filamentous cells had higher extents of cross-linkages in their newly synthesized murein. Quantitative analyses of the D-alanine carboxypeptidase and transpeptidase reactions in the different cells revealed that the carboxypeptidase activity of the filamentous cells was partially inhibited. These results were similar to those previously found with filaments that were obtained after growth of the thermosensitive division mutant at its restrictive temperature. We conclude that the formation of new cell ends (septa) depends on the proper balance between the activities of the D-alanine carboxypeptidase that regulates the availability of precursor doners and the transpeptidase, which catalyzes cross-linking and attachment of newly synthesized murein.  相似文献   

12.
Escherichia coli mutants defective in cheY and cheZ function are motile but generally nonchemotactic; cheY mutants have an extreme counterclockwise bias in flagellar rotation, whereas cheZ mutants have a clockwise rotational bias. Chemotactic pseudorevertants of cheY and cheZ mutants were isolated on semisolid agar and examined for second-site suppressors in other chemotaxis-related loci. Approximately 15% of the cheZ revertants and over 95% of the cheY revertants contained compensatory mutations in the flaA or flaB locus. When transferred to an otherwise wild-type background, most of these suppressor mutations resulted in a generally nonchemotactic phenotype: suppressors of cheY caused a clockwise rotational bias; suppressors of cheZ produced a counterclockwise rotational bias. Chemotactic double mutants containing a che and a fla mutation invariably exhibited flagellar rotation patterns in between the opposing extremes characteristic of the component mutations. This additive effect on flagellar rotation resulted in essentially wild-type swimming behavior and is probably the major basis of suppressor action. However, suppression effects were also allele specific, suggesting that the cheY and cheZ gene products interact directly with the flaA and flaB products. These interactions may be instrumental in establishing the unstimulated swimming pattern of E. coli.  相似文献   

13.
Effect of temperature on motility and chemotaxis of Escherichia coli.   总被引:4,自引:10,他引:4       下载免费PDF全文
K Maeda  Y Imae  J I Shioi    F Oosawa 《Journal of bacteriology》1976,127(3):1039-1046
The swimming velocity of Escherichia coli at various constant temperatures was found to increase with increasing temperature. The frequency of tumbling had a peak at 34 degrees C and was very low both at 20 and at 39 degrees C. The swimming tracks near the surface of a slide glass showed curves, and the curvature increased the temperature. When the temperature of a bacterial suspension was suddenly changed, a transient change of the tumbling frequency was observed. A temperature drop induced a temporary increase in the tumbling frequency, and a quick rise of temperature, on the other hand, resulted in a temporary suppression of the tumbling. These dynamic responses to sudden changes of temperature was not observed in the smoothly swimming nonchemotactic strains bearing the mutations cheA and cheC and also in a mutant with the metF mutation under a smooth swimming condition.  相似文献   

14.
Effect of amino acids and oxygen on chemotaxis in Escherichia coli   总被引:1,自引:6,他引:1  
Adler, Julius (University of Wisconsin, Madison). Effect of amino acids and oxygen on chemotaxis in Escherichia coli. J. Bacteriol. 92:121-129. 1966.-Motile cells of Escherichia coli placed at one end of a capillary tube containing a mixture of the 20 amino acids commonly found in proteins migrate out into the tube in two bands. The bands are clearly visible to the naked eye, and they can also be demonstrated by microscopy, photography, and densitometry, and by assaying for bacteria throughout the tube. The occurrence of more than one band is not due to heterogeneity among the bacteria, since each band can be used over to give rise to two again. The first band uses all the oxygen to oxidize portions of one or more of the amino acids, including serine, and the second band consumes the residual serine anaerobically. The results are interpreted to mean that E. coli shows chemotaxis toward oxygen and serine. When no energy source is added to the medium, a band of bacteria still appears. It consumes all the oxygen to oxidize an endogenous energy source. The addition of any one of 10 oxidizable amino acids stimulates the rate of travel of this band. Alanine, an example that was studied in detail, supports such a band that consumes all the oxygen to oxidize a portion of the alanine. Serine, the only amino acid that this strain can use either aerobically or anaerobically when grown under the conditions used here, gives rise to two bands.  相似文献   

15.
16.
Flagellar proteins controlling motility and chemotaxis in Escherichia coli were selectively labeled in vivo with [35S]methionine. This distribution of these proteins in subcellular fractions was examined by sodium dodecyl sulfatepolyacrylamide gel electrophoresis and autoradiography. The motA, motB, cheM, and cheD gene products were found to be confined exclusively to the inner cytoplasmic membrane fraction, whereas the cheY, cheW, and cheA (66,000 daltons) polypeptides appeared only in the soluble cytoplasmic fraction. The cheB, cheX, cheZ, and cheA (76,000 daltons) proteins, however, were distributed in both the cytoplasm and the inner membrane fractions. The hag gene product (flagellin) was the only flagellar protein examined that copurified with the outer lipopolysaccharide membrane. Differences in the intracellular locations of the che and mot gene prodcuts presumably reflect the functional attributes of these components.  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (TTSS) to inject effector proteins into the plasma membrane and cytosol of infected cells. To translocate proteins, EPEC, like Salmonella and Shigella , is believed to assemble a macromolecular complex (type III secreton) that spans both bacterial membranes and has a short needle-like projection. However, there is a special interest in studying the EPEC TTSS owing to the fact that one of the secreted proteins, EspA, is assembled into a unique filamentous structure also required for protein translocation. In this report we present electron micrographs of EspA filaments which reveal a regular segmented substructure. Recently we have shown that deletion of the putative structural needle protein, EscF, abolished protein secretion and formation of EspA filaments. Moreover, we demonstrated that EspA can bind directly to EscF, suggesting that EspA filaments are physically linked to the EPEC needle complex. In this paper we provide direct evidence for the association between an EPEC bacterial membrane needle complex and EspA filaments, defining a new class of filamentous TTSS.  相似文献   

18.
Molecular cloning techniques were used to construct Escherichia coli-lambda hybrids that contained many of the genes necessary for flagellar rotation and chemotaxis. The properties of specific hybrids that carried the classical "cheA" and "cheB" loci were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the hybrids redefined the "cheA" and "cheB" regions. Six genes were resolved: cheA, cheW, cheX, cheB, cheY, and cheZ. They directed the synthesis of specific polypeptides with the following apparent molecular weights: cheA, 76,000 and 66,000; cheW, 12,000; cheX, 28,000; cheB, 38,000; cheY, 8,000; and cheZ, 24,000. The presence of another gene, cheM, was inferred from the protein synthesis experiments. The cheM gene directed the synthesis of polypeptides with apparent molecular weights of 63,000, 61,000, and 60,000. The synthesis of all of these polypeptides is regulated by the same mechanisms that regulate the synthesis of flagellar-related structural components.  相似文献   

19.
Hydroxylamine mutagenesis was used to alter the tar gene that encodes the transmembrane Tar protein required for chemotaxis. Mutants defective in chemotaxis were selected, and the mutation was characterized by DNA sequencing. Two classes of mutations were found: nonsense and missense. The nonsense mutations were distributed throughout the gene, while the missense mutations were found to cluster in a region that includes 185 amino acids at the C-terminal end of the Tar protein. Partial characterization of mutant phenotypes suggested that some are completely defective in signaling while responding to attractants and repellents by differential methylation. Other mutants are undermethylated and constantly tumble, while yet another class of mutants is overmethylated and biased toward constant swimming with little or no tumbling. These mutants will be useful in experiments designed to understand the mechanism of chemotaxis.  相似文献   

20.
Pretreatment of Escherichia coli w3110 with levorphanol, a morphine analogue, reduced chemotaxis to serine, aspartic acid and galactose. This decreased chemotaxis was not due to decreased viability or motility. Pretreatment with 1.1 mM-levorphanol for 1 h, followed by washing to remove the drug prior to determination of chemotaxis, inhibited chemotaxis to each of the attractants by at least 80%. Pretreatment with dextrorphan, the enantiomorph of levorphanol, or levallorphan, the N-allyl analogue of levorphanol, resulted in a similar inhibition of chemotaxis. Reversal of the inhibition produced by pretreatment with levorphanol required a period of growth of at least one generation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号