首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inverted membrane vesicles from strain 7, a wild type Escherichia coli K12 strain, actively transport calcium with energy supplied either by respiration or by ATP. These vesicles also have energy-linked quenching of quinacrine fluorescence. Membranes of strain 7, depleted of Mg2+ATPase by EDTA treatment, lack both activities. Membrane vesicles from strain NR70, a mutant lacking the Mg2+ATPase, show neither calcium transport nor energy-linked fluorescence quenching. Neither EDTA treatment nor genetic loss of the Mg2+atpase causes a reduction in respiration. Purified Mg2+ATPase from strain 7 can bind to EDTA-treated membrane vesicles from either strain 7 or NR70. This binding restored both calcium transport and fluorescence quenching, driven either by respiration or by ATP. Dicyclohexylcarbodiimide treatment mimics the effect of the Mg2+ATPase in the case of respiration-driven reactions. Treatment with EDTA, while not essential for the binding of the Mg2+ATPase to membrane vesicles of NR70, produced better restoration of both activities. The rate of restoration of fluorescence quenching showed a time lag which may indicate that binding of the Mg2+ATPase is a relatively slow process. Antiserum prepared against the Mg2+ATPase inhibited the quenching of quinacrine fluorescence when driven by ATP but not when driven by respiration. Addition of antiserum prior to addition of Mg2+ATPase prevented the restoration of fluorescence quenching, whether driven by respiration or ATP. These results clearly show that MG2+ATPase has an important role not only in catalyzing ATP synthesis and hydrolysis but also in maintaining the energized membrane state.  相似文献   

3.
4.
5.
The influence of hydrogen ion concentration on binding and conversion of MgATP and CaATP by membrane bound and solubilized ATPase from Escherichia coli has been investigated. The reaction of enzyme (E), hydrogen ion (H+), and substrate (S) procedes according to the following scheme, where Me is the metal ion and P is the product(s). (See article for formular). Within experimental error, the results obtained with membrane-bound and solubilized ATPase are identical. Changing the concentration of Mg2+ ions or replacement of Mg2+ by Ca2+ ions alters the dissociation constants Kb, KHMeATP, and Ka'. The kinetics and experiments with group-specific inhibitors suggest that integrity for amino, imidazole, tyrosyl, carboxyl, and arginyl residues is required for activity of membrane-bound and solubilized E. coli ATPase.  相似文献   

6.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.  相似文献   

7.
A DNA-dependent ATPase has been isolated and purified from an Escherichia coli cell-free extract. The ATPase has the following characteristics: preferential dependence on single-stranded DNA, specificity for ATP hydrolysis, Km value of 1.4 X 10-4 M for ATP, and molecular weight of approximately 69,000. The ATPase can be shown to bind to single stranded DNA. The resemblance between this ATPase and that isolated from vaccinia cores is discussed.  相似文献   

8.
A new DNA-dependent ATPase was isolated and purified from soluble extracts of Escherichia coli. This enzyme, called ATPase II, has a molecular weight of 86,000 and exists in a monomeric state. It degrades ATP (or dATP) to ADP (or dADP) and Pi in the presence of magnesium and requires a double-stranded polynucleotide as cofactor. A correlation between the efficiency as cofactor and the melting point of the polynucleotide has been found; the lower the melting temperature, the higher the stimulation of ATPase II. The enzyme binds to single-stranded DNA and poly[d(A-T)] copolymer, but not to the double-stranded circular DNA (Form I) of simian virus 40.  相似文献   

9.
J Okkeri  T Haltia 《Biochemistry》1999,38(42):14109-14116
Cation-transporting P-type ATPases comprise a major membrane protein family, the members of which are found in eukaryotes, eubacteria, and archaea. A phylogenetically old branch of the P-type ATPase family is involved in the transport of heavy-metal ions such as copper, silver, cadmium, and zinc. In humans, two homologous P-type ATPases transport copper. Mutations in the human proteins cause disorders of copper metabolism known as Wilson and Menkes diseases. E. coli possesses two genes for heavy-metal translocating P-type ATPases. We have constructed an expression system for one of them, ZntA, which encodes a 732 amino acid residue protein capable of transporting Zn(2+). A vanadate-sensitive, Zn(2+)-dependent ATPase activity is present in the membrane fraction of our expression strain. In addition to Zn(2+), the heavy-metal ions Cd(2+), Pb(2+), and Ag(+) activate the ATPase. Incubation of membranes from the expression strain with [gamma-(33)P]ATP in the presence of Zn(2+), Cd(2+), or Pb(2+) brings about phosphorylation of two membrane proteins with molecular masses of approximately 90 and 190 kDa, most likely representing the ZntA monomer and dimer, respectively. Although Cu(2+) can stimulate phosphorylation by [gamma-(33)P]ATP, it does not activate the ATPase. Cu(2+) also prevents the Zn(2+) activation of the ATPase when present in 2-fold excess over Zn(2+). Ag(+) and Cu(+) appear not to promote phosphorylation of the enzyme. To study the effects of Wilson disease mutations, we have constructed two site-directed mutants of ZntA, His475Gln and Glu470Ala, the human counterparts of which cause Wilson disease. Both mutants show a reduced metal ion stimulated ATPase activity (about 30-40% of the wild-type activity) and are phosphorylated much less efficiently by [gamma-(33)P]ATP than the wild type. In comparison to the wild type, the Glu470Ala mutant is phosphorylated more strongly by [(33)P]P(i), whereas the His475Gln mutant is phosphorylated more weakly. These results suggest that the mutation His475Gln affects the reaction with ATP and P(i) and stabilizes the enzyme in a dephosphorylated state. The Glu470Ala mutant seems to favor the E2 state. We conclude that His475 and Glu470 play important roles in the transport cycles of both the Wilson disease ATPase and ZntA.  相似文献   

10.
11.
12.
Inactive coupling factor ATPase (F1) was prepared from an uncoupled mutant (uncA401) of Escherichia coli. Reconstitution of ATPase activity was observed when alpha subunit from wild-type F1 was added to the dissociated inactive F1 and the mixture was dialyzed against buffer containing ATP and Mg2+. ATPase was also reconstituted when the mixture of alpha subunit (wild type) and crude extract from the mutant was dialyzed against the same buffer. These results indicate that the mutant is defective in alpha subunit, suggesting that the uncA401 locus carries the structural gene for alpha subunit, and that this polypeptide plays an essential role in ATPase activity in F1 molecule.  相似文献   

13.
14.
The gene encoding ribosome-bound ATPase (RbbA), which occurs bound to 70S ribosomes and 30S subunits, has been identified. The amino-acid sequence of RbbA reveals the presence of two ATP-binding domains in the N-terminal half of the protein. RbbA harbors an intrinsic ATPase activity that is stimulated by both 70S ribosomes and 30S subunits. Here we show that purified recombinant RbbA markedly stimulates polyphenylalanine synthesis in the presence of the elongation factors Tu and G (EF-Tu and EF-G) and that the hydrolysis of ATP by RbbA is required to stimulate synthesis. RbbA is reported to have affinity for EF-Tu but not for EF-G. Additionally, RbbA copurifies with 30S ribosomal subunits and can be crosslinked to the ribosomal protein S1. Studies using a spectrum of antibiotics, including some of similar function, revealed that hygromycin, which binds to the 30S subunit, has a significant effect on the ATPase activity and on the affinity of RbbA for ribosomes. A possible role for RbbA in protein-chain elongation is proposed.  相似文献   

15.
16.
17.
18.
The proton-translocating ATPase of Escherichia coli   总被引:17,自引:0,他引:17  
  相似文献   

19.
We investigated the regulation of the synthesis of the eight polypeptides of the Escherichia coli proton-translocating ATPase. A plasmid carrying the eight genes of the unc operon was used to direct in vivo and in vitro protein synthesis of the eight polypeptides. Analysis of these data indicates that the ATPase polypeptides are synthesized in unequal amounts both in vitro and in vivo. We identified several regions within the unc operon at which expression of a gene is either increased or decreased from that of the preceding gene. Since genetic information indicates a single polycistronic mRNA for all eight genes of this operon, the observed differential synthesis of the polypeptides is most likely the result of translational regulation. The effect of varying the temperature suggests that the secondary structure in the mRNA may affect the rate of translation initiation in the region between uncE and uncF.  相似文献   

20.
G Vogel  R Steinhart 《Biochemistry》1976,15(1):208-216
A simple procedure for the purification of Mg2+-stimulated ATPase of Escherichia coli by fractionation with poly(ethylene glycols) and gel filtration is described. The enzyme restores ATPase-linked reactions to membrane preparations lacking these activities. Five different polypeptides (alpha, beta, gamma, delta, epsilon) are observed in sodium dodecyl sulfate electrophoresis. Freezing in salt solutions splits the enzyme complex into subunits which do not possess any catalytic activity. The presence of different subunits is confirmed by electrophoretic and immunological methods. The active enzyme complex can be reconstituted by decreasing the ionic strength in the dissociated sample. Temperature, pH, protein concentration, and the presence of substrate are each important determinants of the rate and extent of reconstitution. The dissociated enzyme has been separated by ion-exchange chromatography into two major fragments. Fragment IA has a molecular weight of about 100000 and contains the alpha, gamma, and epsilon polypeptides. The minor fragment, IB, has about the same molecular weight but contains, besides alpha, gamma, and epsilon, the delta polypeptide. Fragment II, with a molecular weight of about 52000, appears to be identical with the beta polypeptide. ATPase activity can be reconstituted from fragments IA and II, whereas the capacity of the ATPase to drive energy-dependent processes in depleted membrane vesicles is only restored after incubation of these two fractions with fraction IB, which contains the delta subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号