首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
呼吸道合胞病毒(respiratory syncytial virus,RSV)感染,是造成婴幼儿、学龄前儿童、免疫缺陷患者、老年人等高危群体住院治疗及死亡的重要病因。目前,多个预防RSV感染的候选疫苗正处于研发中,尚无安全、有效的疫苗面世。对RSV感染的处理仍以治疗为主,使用帕利珠单抗(Palivizumab)是当前仅有的预防药物。在过去数年间出现的新型抗体药物,如多克隆抗体、单克隆抗体、纳米抗体等有些已进入了临床前或I、II、III期临床试验阶段。融合蛋白(fusion protein,F蛋白)在RSV感染过程中是不可或缺的,它介导病毒包膜与宿主细胞膜的融合。在感染过程中,F蛋白从亚稳态的融合前构象状态(prefusion fusion protein,pre F)转变为热力学稳定的融合后状态(postfusion fusionprotein,post F)。近年来,研究人员通过不断筛选,获得了多株针对pre F的抗体。与结合post F的抗体相比,这些抗体具有更强的RSV中和活性。一些更新的抗体药物候选品,在实验中显示出了效力强、药代动力学特征明显、半衰期长等特点,并能以其他途径给药,而且能降低其制备成本。现就抗RSV pre F的抗体研究进展作一概述。  相似文献   

2.
Little is known about the mechanisms of antibody-mediated neutralization of respiratory syncytial virus (RSV) which causes recurrent infections in human despite the virtually universal presence of neutralizing serum antibodies. Human serum neutralization titers showed strong correlation with post-cell-attachment neutralizing titers for both RSV-convalescent sera and control sera but showed less strong correlation with cell-attachment blocking titers. Neutralization was effective for the first 60 min of infection, indicating that immune serum-mediated neutralization of RSV infection largely involves inhibition of early events following cell attachment.  相似文献   

3.
Eighteen neutralizing monoclonal antibodies (MAbs) specific for the fusion glycoprotein of the A2 strain of respiratory syncytial virus (RSV) were used to construct a detailed topological and operational map of epitopes involved in neutralization and fusion. Competitive binding assays identified three nonoverlapping antigenic sites (A, B, and C) and one bridge site (AB). Thirteen MAb-resistant mutants (MARMs) were selected, and the neutralization patterns of the MAbs with either MARMs or RSV clinical strains identified a minimum of 16 epitopes. MARMs selected with antibodies to six of the site A and AB epitopes displayed a small-plaque phenotype, which is consistent with an alteration in a biologically active region of the F molecule. Analysis of MARMs also indicated that these neutralization epitopes occupy topographically distinct but conformationally interdependent regions with unique biological and immunological properties. Antigenic variation in F epitopes was examined by using 23 clinical isolates (18 subgroup A and 5 subgroup B) in cross-neutralization assays with the 18 anti-F MAbs. This analysis identified constant, variable, and hypervariable regions on the molecule and indicated that antigenic variation in the neutralization epitopes of the RSV F glycoprotein is the result of a noncumulative genetic heterogeneity. Of the 16 eptiopes, 8 were conserved on all or all but 1 of 23 subgroup A or subgroup B clinical isolates.  相似文献   

4.
Mutants of human respiratory syncytial (RS) virus which escaped neutralization by monoclonal antibodies directed against the G glycoprotein were selected from the Long strain. Most mutants showed drastic antigenic changes, reflected in the lack of reactivity with several anti-G antibodies, including the one used for selection. Sequence analysis revealed the presence of in-frame premature stop codons in the mutated G genes which shortened the G polypeptide by between 11 and 42 amino acids. In contrast, two mutants selected with monoclonal antibody 25G contained two amino acid substitutions (Phe-265----Leu and Leu-274----Pro) and had lost only the capacity to bind the antibody used in their selection. These results demonstrate that the carboxy-terminal end of the G molecule is dispensable for infectivity in tissue culture and indicate the importance of this part of the G protein in determining its antigenicity.  相似文献   

5.
The lymphocyte proliferative responses to respiratory syncytial virus (RSV) were evaluated for 10 healthy adult donors and compared with proliferative responses to a chimeric glycoprotein (FG glycoprotein) which consists of the extracellular domains of both the F and G proteins of RSV and which is produced from a recombinant baculovirus. The lymphocytes of all 10 donors responded to RSV, and the proliferative responses to the whole virus were highly correlated with the responses to the FG glycoprotein. These data suggested that one or both of these glycoproteins of RSV were major target structures for stimulation of the human lymphocyte proliferative response among virus-specific memory T cells. The lymphocytes of four donors were evaluated further for their proliferative responses to a nested set of overlapping peptides modeled on the extracellular and cytoplasmic domains of the F protein of RSV. Strikingly, the lymphocytes of all 4 donors responded primarily to a region defined by a single peptide spanning residues 338 to 355, and the lymphocytes of 2 donors responded to an overlapping peptide spanning residues 328 to 342 also, thus defining a region of the F1 subunit within residues 328 to 355 that may circumscribe an immunodominant site for stimulation of human T cells from a variety of individuals. This region of the F protein is highly conserved among A and B subgroup viruses. As revealed by monoclonal antibody blocking studies, the lymphocytes responding to this antigenic site had characteristics consistent with T helper cells. Similar epitope mapping studies were performed with BALB/c mice immunized with the FG protein in which a relatively hydrophobic peptide spanning residues 51 to 65 within the F2 subunit appeared to be the major T cell recognition determinant. The data are discussed with respect to an antigenic map of the F protein and the potential construction of a synthetic vaccine for RSV.  相似文献   

6.
Monoclonal antibodies directed against the glycoproteins of human respiratory syncytial virus were used in competitive enzyme-linked immunosorbent assays for topological mapping of epitopes. Whereas epitopes of the F glycoprotein could be ascribed to five nonoverlapping antigenic sites, anti-G antibodies recognized unique epitopes, many of whose competition profiles overlapped extensively. Variant viruses selected with a neutralizing (47F) anti-F antibody lost the binding for only 47F and 49F antibodies, which mapped in the same antigenic area. In contrast, viruses selected with an anti-G antibody lost the capacity to bind most of the anti-G antibodies, and their G protein was not recognized by an anti-virus antiserum, indicating major changes in the antigenic structure of the G molecule. Finally, we found great antigenic variation of the G protein among viral isolates. This occurred even within viruses of the same subtype with only limited divergence of amino acid sequence between strains. All of these data indicate marked differences in the antigenic organization of the G and F glycoproteins of respiratory syncytial virus; we discuss these differences in terms of the chemical structure of the glycoproteins.  相似文献   

7.
High-performance liquid affinity chromatography (HPLAC) utilizing Protein G as a ligand has been evaluated for rapid quantification of monoclonal antibodies (MAbs) in various solutions. The results obtained by HPLAC agreed to within 10% of a standard enzyme-linked immunospecific assay (ELISA). A standard curve was prepared by injection of known amounts of a purified murine IgG1 with the elution peak area analyzed by computer integration software. Accuracy of quantification was independent of the injection volume, solution compositions, or mouse IgG subclass. A method is described for using Protein G HPLAC to determine murine IgG levels in various complex mixtures within 15 min, compared to the ELISA which required 5 h.  相似文献   

8.
Six monoclonal antibodies directed against respiratory syncytial virus proteins were produced. Each was characterized by immunoprecipitation and indirect immunofluorescence. One was directed against the nucleocapsid protein. NP 44, two were directed against a 37,000-dalton protein, two were directed against the major envelope glycoprotein, GP 90, and one was directed against the 70,000-dalton envelope protein, VP 70. Indirect immunofluorescence stain patterns of infected HEp-2 cells defined GP 90 and VP 70 as viral proteins expressed on the cell surface, whereas NP 44 and the 37,000-dalton protein were detected as intracytoplasmic inclusions. One of the anti-GP 90 antibodies neutralized virus only in the presence of complement but did not inhibit cell-cell fusion. The anti-VP 70 antibody neutralized virus without complement and inhibited cell-cell fusion of previously infected HEp-2 cells, thus identifying VP 70 as the fusion protein.  相似文献   

9.
10.
As the AIDS epidemic continues unabated, the development of a human immunodeficiency virus (HIV) vaccine is critical. Ideally, an effective vaccine should elicit cell-mediated and neutralizing humoral immune responses. We have determined the in vitro susceptibility profile of sexually transmitted viruses from 91 patients with acute and early HIV-1 infection to three monoclonal antibodies, 2G12, 2F5, and 4E10. Using a recombinant virus assay to measure neutralization, we found all transmitted viruses were neutralized by 4E10, 80% were neutralized by 2F5, and only 37% were neutralized by 2G12. We propose that the induction of 4E10-like antibodies should be a priority in designing immunogens to prevent HIV-1 infection.  相似文献   

11.
目的构建呼吸道合胞病毒融合蛋白F1和截短F1蛋白的原核表达载体,并对它们在大肠杆菌中的表达差异进行了初步研究。方法用DNAstar软件对呼吸道合胞病毒F1蛋白进行亲疏水性和抗原表位可能性分析后,将其两端的疏水区域截去之后与pET-42b(+)构建表达载体,同时用相同的表达系统构建F1蛋白的表达载体并将2种重组蛋白进行诱导表达。实验对2种蛋白在Rossata/pET-42b(+)菌株中的表达难易度、表达形式及初步洗涤的包涵体纯度进行了比较。结果与F1蛋白相比,截短的F1蛋白相对更容易表达,表达的可溶性蛋白含量更高,洗涤纯化后的包涵体纯度也更高。结论呼吸道合胞病毒F1蛋白截去两端疏水氨基酸后更容易表达,为后期蛋白的大量制备及其免疫原性研究奠定了基础。  相似文献   

12.
13.
14.
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation.  相似文献   

15.
Summary Most of the monoclonal antibodies (MAbs) raised against the fusion (F) protein of the bovine respiratory syncytial virus recognize discontinuous epitopes on the protein. In order to find mimotopes of these epitopes, phage-displayed peptide libraries were screened with MAbs. The results obtained with MAb AL11C2 are described here. After four or five pannings, colony immunoscreening with AL11C2 allowed the isolation of positive clones that are specific for this monoclonal antibody. Four different sequences were determined on isolated phages, three of which are cysteine-constrained peptides in fusion with PVIII and one is a hexapeptide in fusion with PIII. In the case of the peptides containing two cysteines, the binding to AL11C2 was shown to be dependent on the presence of a disulfide bridge. The recombinant phages were also shown to inhibit the binding of AL11C2 to its natural antigen in a competitive ELISA assay.  相似文献   

16.
17.
BBG2Na is a recombinant protein, composed in part of carrier protein BB and of the central conserved domain of the attachment glycoprotein G of human respiratory syncytial virus (HRSV) subgroup A. This protein is a potent vaccine candidate against HRSV. G2Na contains several contiguous B-cell epitopes, occupying sequential positions in the linear sequence of the protein. One of the epitopes contains four cysteines that are completely conserved in known strains of HRSV and form a 'cysteine noose' motif. In this study, we analysed circular dichroism (CD) spectra of BBG2Na and its B-cell epitopes. We also used NMR and molecular dynamics simulations to determine the three-dimensional structure of the cysteine noose domain. We observed significant structural differences related to the length of peptides containing the cysteine noose. These differences show good correlation with the immunogenic activity of the peptides. It is shown that a single Val(171) addition induces a pronounced structure stabilization of the cysteine noose peptide G4a (1-4/2-3) (residues 172-187), which is associated with a 100-fold increase in its antigenicity vis-à-vis a G-protein specific monoclonal antibody.  相似文献   

18.
In a group of 11 monoclonal antibodies specifically reacting with the measles virus fusion protein, three antibodies also immunoprecipitated other proteins, in particular a 79,000-molecular-weight protein from virus-infected cells. The cross-reacting 79,000-molecular-weight protein was shown to be a virus-induced host stress protein. This protein could be induced by (i) different paramyxoviruses, (ii) heat shock of uninfected HeLa cells, and (iii) 2-deoxyglucose, tunicamycin, or L-canavanine treatment of different mammalian cell lines. Immunofluorescence of stressed HeLa cells localized the cross-reacting host protein(s) mainly in the cytoplasm. The significance of these results in relation to autoimmunity is discussed.  相似文献   

19.
The Respiratory Syncytial Virus (RSV) fusogenic glycoprotein F(1) was characterized using biochemical and biophysical techniques. Two heptad-repeat (HR) regions within F(1) were shown to interact. Proteinase-K digestion experiments highlight the HR1 region (located proximal to the fusion peptide sequence) of the F(1) protein to which an HR2-derived (located proximal to the membrane-spanning domain) peptide binds, thus protecting both the protein and peptide from digestion. Solution-phase analysis of HR1-derived peptides shows that these peptides adopt helical secondary structure as measured by circular dichroism. Sedimentation equilibrium studies indicate that these HR1 peptides self-associate in a monomer/trimer equilibrium with an association constant of 5.2 x 10(8) M(-2). In contrast, HR2-derived peptides form random monomers in solution. CD analysis of mixtures containing peptides from the two regions demonstrate their propensity to interact and form a very stable (T(m) = 87 degrees C), helical (86% helicity) complex comprised of three HR1 and three HR2 members.  相似文献   

20.
In the human adaptation and optimization of a mouse anti-human respiratory syncytial virus neutralizing antibody, affinity assessment was crucial to distinguish among potential candidates and to evaluate whether this correlated with function in vitro and in vivo. This affinity assessment was complicated by the trimeric nature of the antigen target, respiratory syncytial virus F (RSV-F) glycoprotein. In the initial affinity screen, surface plasmon resonance was used to determine the intrinsic binding affinities of anti-RSV-F Fab and immunoglobulin G (IgG) to the extracellular domain of RSV-F. This assessment required minimal biotinylation of the RSV-F protein and design of a capture strategy to minimize avidity effects. Approximately 30 Fabs were selected from three optimization phage display libraries on the basis of an initial ELISA screen. Surface plasmon resonance analysis demonstrated the success of optimization with some candidates from the screened libraries having low picomolar dissociation constants, more than 700-fold tighter than the parental monoclonal antibody (B21M). The affinities of these antibodies were further evaluated by a kinetic exclusion assay, a solution binding technology. One IgG (monoclonal antibody 029) displayed a low picomolar K(D) comparable with that of motavizumab, an RSV antibody in clinical study. Kinetic exclusion assay showed that two other of the matured IgGs (011 and 019) had sub-picomolar dissociation constants that could not be resolved further. We discuss the relevance of these interaction analysis results in the light of recently published data on the mechanism of F-driven viral fusion during paramyxoviral infection and 101F epitope conservation revealed from the recent crystal structure of RSV-F in the post-fusion state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号