首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Like other bacteria, Bacillus subtilis possesses a family of homologous small acidic proteins (CspB, CspC and CspD, identity > 70%) that are strongly induced in response to cold shock. We show that deletion of cspC or cspD genes did not result in a detectable phenotype; in contrast, csp double mutants exhibited severe reduction in cellular growth at 15°C as well as at 37°C, including impairment of survival during the stationary phase. Two-dimensional gel analysis showed that protein synthesis was deregulated in csp double mutants and that the loss of one or two CSPs led to an increase in the synthesis of the remaining CSP(s) at 37°C and after cold shock, suggesting that CSPs down-regulate production of members from this protein family. A cspB/C/D triple mutant (64BCDbt) could only be generated in the presence of cspB in trans on a plasmid that was not lost, in spite of lack of antibiotic pressure, indicating that a minimum of one csp gene is essential for viability of B . subtilis . After cold shock, synthesis of CspB in 64BCDbt was drastically lower than in wild-type cells accompanied by cessation in growth and strong reduction in general protein synthesis. As CspB, CspC and CspD are shown to bind to RNA in a co-operative and interactive manner, CSPs are suggested to function as RNA chaperones facilitating the initiation of translation under optimal and low temperatures.  相似文献   

3.
In this study, growth rates and lag times of the five RNA helicase-deleted mutants of Bacillus cereus ATCC 14579 were compared to those of the wild-type strain under thermal, oxidative, and pH stresses. Deletion of cshD and cshE had no impact under any of the tested conditions. Deletion of cshA, cshB, and cshC abolished growth at 12°C, confirming previous results. In addition, we found that each RNA helicase had a role in a specific temperature range: deletion of cshA reduced growth at all the tested temperatures up to 45°C, deletion of cshB had impact below 30°C and over 37°C, and deletion of cshC led mainly to a cold-sensitive phenotype. Under oxidative conditions, deletion of cshB and cshC reduced growth rate and increased lag time, while deletion of cshA increased lag time only with H(2)O(2) and reduced growth rate at a high diamide concentration. Growth of the ΔcshA strain was affected at a basic pH independently of the temperature, while these conditions had a limited effect on ΔcshB and ΔcshC strain growth. The RNA helicases CshA, CshB, and CshC could participate in a general adaptation pathway to stressful conditions, with a stronger impact at low temperature and a wider role of CshA.  相似文献   

4.
5.
6.
In most organisms, dedicated multiprotein complexes, called exosome or RNA degradosome, carry out RNA degradation and processing. In addition to varying exoribonucleases or endoribonucleases, most of these complexes contain a RNA helicase. In the Gram‐positive bacterium Bacillus subtilis, a RNA degradosome has recently been described; however, no RNA helicase was identified. In this work, we tested the interaction of the four DEAD box RNA helicases encoded in the B. subtilis genome with the RNA degradosome components. One of these helicases, CshA, is able to interact with several of the degradosome proteins, i.e. RNase Y, the polynucleotide phosphorylase, and the glycolytic enzymes enolase and phosphofructokinase. The determination of in vivo protein–protein interactions revealed that CshA is indeed present in a complex with polynucleotide phosphorylase. CshA is composed of two RecA‐like domains that are found in all DEAD box RNA helicases and a C‐terminal domain that is present in some members of this protein family. An analysis of the contribution of the individual domains of CshA revealed that the C‐terminal domain is crucial both for dimerization of CshA and for all interactions with components of the RNA degradosome, including RNase Y. A transfer of this domain to CshB allowed the resulting chimeric protein to interact with RNase Y suggesting that this domain confers interaction specificity. As a degradosome component, CshA is present in the cell in similar amounts under all conditions. Taken together, our results suggest that CshA is the functional equivalent of the RhlB helicase of the Escherichia coli RNA degradosome.  相似文献   

7.
8.
9.
A cold shock-induced cyanobacterial RNA helicase   总被引:4,自引:0,他引:4  
  相似文献   

10.
11.
The cold shock protein CspB from Bacillus subtilis binds T-based single-stranded DNA (ssDNA) with high affinity (Lopez, M. M., Yutani, K., and Makhatadze, G. I. (1999) J. Biol. Chem. 274, 33601-33608). In this paper we report the results of CspB interactions with non-homogeneous ssDNA templates containing continuous and non-continuous stretches of T bases. The analysis of CspB-ssDNA interactions was performed using fluorescence spectroscopy, analytical centrifugation and isothermal titration calorimetry. We show that (i) there is a strong correlation between the CspB affinity and stoichiometry and the T content in the oligonucleotide that is independent of which other bases are incorporated into the sequence of ssDNA; (ii) the binding properties of CspB to ssDNA templates with continuous or non-continuous stretches of T bases with similar T content is very similar, and (iii) the mechanism of interaction between CspB and the T-based non-homogeneous ssDNA is mainly through the bases (a stretch of three T bases located in the middle of the ssDNA templates makes the binding independent of the ionic strength). The biological relevance of these results to the role of CspB as an RNA chaperone is discussed.  相似文献   

12.
13.
14.
When carrying out a proteome analysis with a ptsH3 mutant of Lactobacillus casei, we found that the cold shock protein CspA was significantly overproduced compared to the wild-type strain. We also noticed that CspA and CspB of L. casei and CSPs from other organisms exhibit significant sequence similarity to the C-terminal part of EIIA(Glc), a glucose-specific component of the phosphoenolpyruvate:sugar phosphotransferase system. This similarity suggested a direct interaction of HPr with CSPs, as histidyl-phosphorylated HPr has been shown to phosphorylate EIIA(Glc) in its C-terminal part. We therefore compared the cold shock response of several carbon catabolite repression mutants to that of the wild-type strain. Following a shift from 37 degrees C to lower temperatures (20, 15 or 10 degrees C), all mutants showed significantly reduced growth rates. Moreover, glucose-grown mutants unable to form P-Ser-HPr (ptsH1, hprK) exhibited drastically increased sensitivity to freeze/thaw cycles. However, when the same mutants were grown on ribose or maltose, they were similarly resistant to freezing and thawing as the wild-type strain. Although subsequent biochemical and genetic studies did not allow to identify the form of HPr implicated in the resistance to cold and freezing conditions, they strongly suggested a direct interaction of HPr or one of its phospho-derivatives with CspA and/or another, hitherto undetected cold shock protein in L. casei.  相似文献   

15.
16.
CspB is a small acidic protein of Bacillus subtilis, the induction of which is increased dramatically in response to cold shock. Although the exact functional role of CspB is unknown, it has been demonstrated that this protein binds single-stranded deoxynucleic acids (ssDNA). We addressed the question of the effect of base composition on the CspB binding to ssDNA by analyzing the thermodynamics of CspB interactions with model oligodeoxynucleotides. Combinations of four different techniques, fluorescence spectroscopy, gel shift mobility assays, isothermal titration calorimetry, and analytical ultracentrifugation, allowed us to show that: 1) CspB can preferentially bind poly-pyrimidine but not poly-purine ssDNA templates; 2) binding to T-based ssDNA template occurs with high affinity (K(d(25 degrees C)) approximately 42 nM) and is salt-independent, whereas binding of CspB to C-based ssDNA template is strongly salt-dependent (no binding is observed at 1 M NaCl), indicating large electrostatic component involved in the interactions; 3) upon binding each CspB covers a stretch of 6-7 thymine bases on T-based ssDNA; and 4) the binding of CspB to T-based ssDNA template is enthalpically driven, indicating the possible involvement of interactions between aromatic side chains on the protein with the thymine bases. The significance of these results with respect to the functional role of CspB in the bacterial cold shock response is discussed.  相似文献   

17.
18.
19.
The cold shock response in both Escherichia coli and Bacillus subtilis is induced by an abrupt downshift in growth temperature and leads to a dramatic increase in the production of a homologous class of small, often highly acidic cold shock proteins. This protein family is the prototype of the cold shock domain (CSD) that is conserved from bacteria to humans. For B. subtilis it has been shown that at least one of the three resident cold shock proteins (CspB to D) is essential under optimal growth conditions as well as during cold shock. Analysis of the B. subtilis cspB cspC double deletion mutant revealed that removal of these csp genes results in pleiotropic alteration of protein synthesis, cell lysis during the entry of stationary growth phase, and the inability to differentiate into endospores. We show here that heterologous expression of the translation initiation factor IF1 from E. coli in a B. subtilis cspB cspC double deletion strain is able to cure both the growth and the sporulation defects observed for this mutant, suggesting that IF1 and cold shock proteins have at least in part overlapping cellular function(s). Two of the possible explanation models are discussed.  相似文献   

20.
Thermotoga maritima (Tm) expresses a 7 kDa monomeric protein whose 18 N-terminal amino acids show 81% identity to N-terminal sequences of cold shock proteins (Csps) from Bacillus caldolyticus and Bacillus stearothermophilus. There were only trace amounts of the protein in Thermotoga cells grown at 80 degrees C. Therefore, to perform physicochemical experiments, the gene was cloned in Escherichia coli. A DNA probe was produced by PCR from genomic Tm DNA with degenerated primers developed from the known N-terminus of TmCsp and the known C-terminus of CspB from Bacillus subtilis. Southern blot analysis of genomic Tm DNA allowed to produce a partial gene library, which was used as a template for PCRs with gene- and vector-specific primers to identify the complete DNA sequence. As reported for other csp genes, the 5' untranslated region of the mRNA was anomalously long; it contained the putative Shine-Dalgarno sequence. The coding part of the gene contained 198 bp, i.e., 66 amino acids. The sequence showed 61% identity to CspB from B. caldolyticus and high similarity to all other known Csps. Computer-based homology modeling allowed the conclusion that TmCsp represents a beta-barrel similar to CspB from B. subtilis and CspA from E. coli. As indicated by spectroscopic analysis, analytical gel permeation chromatography, and mass spectrometry, overexpression of the recombinant protein yielded authentic TmCsp with a molecular weight of 7,474 Da. This was in agreement with the results of analytical ultracentrifugation confirming the monomeric state of the protein. The temperature-induced equilibrium transition at 87 degrees C exceeds the maximum growth temperature of Tm and represents the maximal Tm-value reported for Csps so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号