首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at - 196 degrees C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5mMMgCl2 which presumably changes the distrubution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, alpha, being the fraction distributed to Photosystem I, and beta, the fraction to Photosystem II to Photosystem I, KT(II yields I). The data, analyzed within the context of the model, permit a direct comparison of alpha and kt(II yields I) in the absence (minus) and presence (+) of Mg-2+ :alpha minus/alpha-+ equals 1.2 and k-minus t)II yields I)/K-+T(II yields I) equal to 1.9. If the criterion that alpha + beta equal to 1 is applied absolute values can be calculated: in the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg-2+, alpha-minus equal to 0.32 and phi t(II yields I) varied from 0.12 to 0.28. The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvesting chlorophyll of Photosystem II to Photosystem I, kt(II yields I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II yields I). In that case alpha-minus/alpha+ equal to 1.3, k-minus t(II yields I)/k+ t(II yields I)equal to 1.3 and k-minus t(II yields I) equal to 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

2.
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of porphyridium cruentum which had been frozen to -196 degrees C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at -196 degrees C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

3.
The connections which exist, in the photosynthetic apparatus, between the spatial arrangement of chlorophyll and the movement of excitation energy are discussed.The capture frequency of excitations in the photosystem II is analysed. At the microscopic level of a photosynthetic unit two stages are studied: the propagation of the excitation to the reaction centre and the photochemical utilization of the excitation by the centre. It is shown that the transport process is not a limiting one. It implies that the capture frequency depends on the reaction centre state. Thus it is possible to distinguish eight states for a photosynthetic unit of system II.At the macroscopic level of a set of units, the analysis of the fluorescence yield-fluctuations shows that these units are not isolated. It also indicates that the fluorescence emitted by the photosynthetic apparatus originates almost entirely from the system II, and that the reaction centres are traps for excitations whatever their states.  相似文献   

4.
Arthur C. Ley  Warren L. Butler 《BBA》1977,462(2):290-294
Rates of photooxidation of P-700 by green (560 nm) or blue (438 nm) light were measured in whole cells of Porphyridium cruentum which had been frozen to ?196 °C under conditions in which the Photosystem II reaction centers were either all open (dark adapted cells) or all closed (preilluminated cells). The rate of photooxidation of P-700 at ?196 °C by green actinic light was approx. 80% faster in the preilluminated cells than in the dark-adapted cells. With blue actinic light, the rates of P-700 photooxidation in the dark-adapted and preilluminated cells were not significantly different. These results are in excellent agreement with predictions based on our previous estimates of energy distribution in the photosynthetic apparatus of Porphyridium cruentum including the yield of energy transfer from Photosystem II to Photosystem I determined from low temperature fluorescence measurements.  相似文献   

5.
6.
7.
Energy transfer in a model of the photosynthetic unit of green plants   总被引:3,自引:0,他引:3  
A model array is set up to represent a photosynthetic unit of 344 chlorophyll molecules of seven different spectral varieties and in definite orientations. The array is provided with two traps, representing the reaction centers of photosystems I and II. The number of jumps required to obtain a high probability of trapping is lower than on a similar array of undifferentiated chlorophylls by a factor of 15. Most of the molecules fall into two groups which transfer their energy predominantly into one or the other trap, and which may be regarded as functional photosystems I and II. The rate of transfer between these two functional photosystems can be controlled by redirecting the orientation of only six of the molecules, which occupy a key position in the array. The effect on trapping rates of reorientation of these molecules is especially pronounced when one of the traps is closed. This constitutes a model for the control of energy distribution between the two photosystems, as indicated in recent years through fluorescence studies.  相似文献   

8.
K. Satoh  R. Strasser  W.L. Butler 《BBA》1976,440(2):337-345
Photosystem I activity of Tris-washed chloroplasts was measured at room temperature as the rate of photoreduction of NADP and as the rate of oxygen uptake mediated by methyl viologen in both cases using dichlorophenolindophenol plus ascorbate as the source of electrons for Photosystem I. With both assay systems the rate of electron transport by Photosystem I was stimulated approx. 20 % by the addition of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which caused the Photosystem II reaction centers to close. Photosystem I activity of chloroplasts was measured at low temperature as the rate of photooxidation of P-700. Chloroplasts suspended in the presence of hydroxylamine and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea were frozen to ?196 °C after adaptation to darkness or after a preillumination at room temperature. The Photosystem II reaction centers of the frozen dark-adapted sample were all open; those of the preilluminated sample were all closed. The rate of photooxidation of P-700 at ?196 °C with the preilluminated sample was approx. 25 % faster than with the dark-adapted sample. We conclude from both the room temperature and the low temperature experiments that there is greater energy transfer from Photosystem II to Photosystem I when the Photosystem II reaction centers are closed and that these results are a direct demonstration of spillover.  相似文献   

9.
M Werst  Y Jia  L Mets    G R Fleming 《Biophysical journal》1992,61(4):868-878
The fluorescence decay kinetics of the photosystem I-only mutant strain of Chlamydomonas reinhardtii, A4d, are used to study energy transfer and structural organization in photosystem I (PSI). Time-resolved measurements over a wide temperature range (36-295 K) have been made both on cells containing approximately 65 core chl a/P700 and an additional 60-70 chl a + b from LHC proteins and on PSI particles containing 40-50 chl a/P700. In each case, the fluorescence decay kinetics is dominated by a short component, tau 1 which is largely attributed to the lifetime of the excitations in the core complex. The results are discussed in terms of simulations of the temperature dependence of tau 1 in model systems. Spectral inhomogeneity and the temperature dependence of the spectral lineshapes are included explicitly in the simulations. Various kinds of antenna arrangements are modeled with and without the inclusion of pigments with lower absorption energies than the trap (red pigments). We conclude that funnel arrangements are not consistent with our measurements. A random model that includes one or two red pigments placed close to the trap shows temperature and wavelength dependence similar to that observed experimentally. A comparison of the temperature dependence of tau 1 for cells and PSI particles is included.  相似文献   

10.
We have investigated the structure of the photosynthetic membrane in a mutant of barley known to lack a chlorophyll-binding protein. This protein is thought to channel excitation energy to photosystem II, and is known as the "light-harvesting chlorophyll-protein complex." Extensive stacking of thylakoids into grana occurs in both mutant and wild-type chloroplasts. Examination of membrane internal structure by freeze-fracturing indicates that only slight differences exist between the fracture faces of mutant and wild-type membranes. These differences are slight reductions in the size of particles visible on the EFs fracture face, and in the number of particles seen on the PFs fracture face. No differences can be detected between mutant and wild-type on the etched out surface of the membrane. In contrast, tetrameric particles visible on the etched inner surface of wild-type thylakoids are extremely difficult to recognize on similar surfaces of the mutant. These particles can be recognized on inner surfaces of the mutant membranes when they are organized into regular lattices, but these lattices show a much closer particle-to-particle spacing than similar lattices in wild-type membranes. Although several interpretations of these data are possible, these observations are consistent with the proposal that the light-harvesting chlorophyll-protein complex of photosystem II is bound to the tetramer (which is visible on the EFs face as a single particle) near the inner surface of the membrane. The large tetramer, which other studies have shown to span the thylakoid membrane, may represent an assembly of protein, lipid, and pigment comprising all the elements of the photosystem II reaction. A scheme is presented which illustrates one possibility for the light reaction across the photosynthetic membrane.  相似文献   

11.
F Rousseau  P Stif    B Lagoutte 《The EMBO journal》1993,12(5):1755-1765
Of the stroma-accessible proteins of photosystem I (PSI) from Synechocystis sp. PCC 6803, the PSI-C, PSI-D and PSI-E subunits have already been characterized, and the corresponding genes isolated. PCR amplification and cassette mutagenesis were used in this work to delete the psaE gene. PSI particles were isolated from this mutant, which lacks subunit PSI-E, and the direct photoreduction of ferredoxin was investigated by flash absorption spectroscopy. The second order rate constant for reduction of ferredoxin by wild type PSI was estimated to be approximately 10(9) M-1s-1. Relative to the wild type, PSI lacking PSI-E exhibited a rate of ferredoxin reduction decreased by a factor of at least 25. After reassociation of the purified PSI-E polypeptide, the original rate of electron transfer was recovered. When a similar reconstitution was performed with a PSI-E polypeptide from spinach, an intermediate rate of reduction was observed. Membrane labeling of the native PSI with fluorescein isothiocyanate allowed the isolation of a fluorescent PSI-E subunit. Peptide analysis showed that some residues following the N-terminal sequence were labeled and thus probably accessible to the stroma, whereas both N- and C-terminal ends were probably buried in the photosystem I complex. Site-directed mutagenesis based on these observations confirmed that important changes in either of the two terminal sequences of the polypeptide impaired its correct integration in PSI, leading to phenotypes identical to the deleted mutant. Less drastic modifications in the predicted stroma exposed sequences did not impair PSI-E integration, and the ferredoxin photoreduction was not significantly affected. All these results lead us to propose a structural role for PSI-E in the correct organization of the site involved in ferredoxin photoreduction.  相似文献   

12.
The theoretical relationships between the fluorescence and photochemical yields of PS II and the fraction of open reaction centers are examined in a general model endowed with the following features: i) a homogeneous, infinite PS II domain; ii) exciton-radical-pair equilibrium; and iii) different rates of exciton transfer between core and peripheral antenna beds. Simple analytical relations are derived for the yields and their time courses in induction experiments. The introduction of the exciton-radical-pair equilibrium, for both the open and closed states of the trap, is shown to be equivalent to an irreversible trapping scheme with modified parameters. Variation of the interunit transfer rate allows continuous modulation from the case of separated units to the pure lake model. Broadly used relations for estimating the relative amount of reaction centers from the complementary area of the fluorescence kinetics or the photochemical yield from fluorescence levels are examined in this framework. Their dependence on parameters controlling exciton decay is discussed, allowing assessment of their range of applicability. An experimental induction curve is analyzed, with a discussion of its decomposition into alpha and beta contributions. The sigmoidicity of the induction kinetics is characterized by a single parameter J related to Joliot's p, which is shown to depend on both the connectivity of the photosynthetic units and reaction center parameters. On the other hand, the relation between J and the extreme fluorescence levels (or the deviation from the linear Stern-Volmer dependence of 1/phi f on the fraction of open traps) is controlled only by antenna connectivity. Experimental data are consistent with a model of connected units for PS II alpha, intermediate between the pure lake model of unrestricted exciton transfer and the isolated units model.  相似文献   

13.
The yield of oxygen from cells of Chlorella vulgaris illuminated for 0.5 μs with 596 nm laser light reversibly declines at flash energies much greater than those required for saturation. The decline in oxygen flash yields is specifically related to the optical cross-section per Photosystem (PS) II trap. The effect can be explained as the result of a total annihilation process which occurs either at the PS II trap (with very low probability) or in the PS II antenna (with very short lifetime). Evidence from separate experiments is discussed which suggests that the process occurs at the PS II trap. The probability of this process is about 10?4.  相似文献   

14.
The movement of excitation between the different units of photosystem II is studied. The properties of this movement are taken into account by a single parameter: the connection parameter. It describes two separate processes: the actual propagation of excitations between units, and the competition between the centres for the excitation capture. It is shown, that at room temperature the movement of excitations depends only with the competition process, and may be considered as free. Thus the working of a photosystem II domain is essentially governed by the states of the different centres it contains.  相似文献   

15.
The effects of UV radiation on the low temperature fluorescenceand primary photochemistry of PSII and PSI of spinach chloroplastswere studied. Fluorescence induction curves at –196°Cwere measured at 695 nm for PSII fluorescence and at 730 nmfor PSI fluorescence to determine both the initial Fo and finalFM levels. The primary photochemistry of PSII was measured asthe rate of photoreduction of C-550 at – 196°C, thatof PSI as the rate of photooxidation of P700 at –196°C.The results were analyzed in terms of a model for the photosyntheticapparatus which accounts for the yields of fluorescence andprimary photochemistry. According to this analysis UV radiationincreases nonradiative decay processes at the reaction centerchlorophyll of PSII. However, the effect of UV radiation isnot uniform throughout the sample during irradiation so thataccount must be taken of the fraction of PSII reaction centerswhich have been irradiated at any given time. UV radiation alsoinactivates P700 and causes a slight increase in nonradiativedecay in the antenna chlorophyll of PSI. All fluorescence ofvariable yield, FV = FM–Fo, at 730 nm is due to energytransfer from PSII to PSI so that the sensitivity of Fv to UVradiation is the same at 730 and 695 nm. 1Present address: Department of Biology, Faculty of Science,Toho University, Narashino, Chiba 275, Japan. 2Present address: Central Research Laboratories, Fuji PhotoFilm Co., Ltd., 105 Mizonuma, Asaka-Shi, Saitama 351, Japan. (Received September 10, 1975; )  相似文献   

16.
17.
Efficient photosynthetic energy transduction and its regulation depend on a precise supramolecular arrangement of the plant photosystem II (PSII) complex in grana membranes of chloroplasts. The topography of isolated photosystem II supercomplexes and the supramolecular organization of this complex in grana membrane preparations are visualized by high-resolution atomic force microscopy (AFM) in air in tapping mode with an active feedback control to minimize tip-sample interactions. Systematic comparison between topographic characteristics of the protrusions in atomic force microscopic images and well-established high-resolution and freeze-fracture electron microscopic data shows that the photosystem II organization can be properly imaged by AFM in air. Taking the protruding water-splitting apparatus as a topographic marker for PSII, its distribution and orientation in isolated grana membrane were analyzed. For the latter a new mathematical procedure was established, which revealed a preference for a parallel alignment of PSII that resembles the organization in highly ordered semicrystalline arrays. Furthermore, by analyzing the height of grana membrane stacks, we conclude that lumenal protrusions of adjacent photosystem II complexes in opposing membranes are displaced relative to each other. The functional consequences for lateral migration processes are discussed.  相似文献   

18.
19.
The photosystem II (PSII) complex is located in the thylakoid membrane of higher plants, algae and cyanobacteria and drives the water oxidation process of photosynthesis, which splits water into reducing equivalents and molecular oxygen by solar energy. Electron and X-ray crystallography analyses have revealed that the PSII core complex contains between 34 and 36 transmembrane alpha-helices, depending on the organism. Of these helices at least 12-14 are attributed to low molecular mass proteins. However, to date, at least 18 low molecular mass (<10 kDa) subunits are putatively associated with the PSII complex. Most of them contain a single transmembrane span and their protein sequences are conserved among photosynthetic organisms. In addition, these proteins do not have any similarity to any known functional proteins in any type of organism, and only two of them bind a cofactor. These findings raise intriguing questions about why there are so many small protein subunits with single-transmembrane spans in the PSII complex, and their possible functions. This article reviews our current knowledge of this group of proteins. Deletion mutations of the low molecular mass subunits from both prokaryotic and eukaryotic model systems are compared in an attempt to understand the function of these proteins. From these comparisons it seems that the majority of them are involved in stabilization, assembly or dimerization of the PSII complex. The small proteins may facilitate fast dynamic conformational changes that the PSII complex needs to perform an optimal photosynthetic activity.  相似文献   

20.
A criterion has been evolved for distinguishing between migration- and trapping-limited photosynthetic units (PSUs). Its application to purple bacteria has proved their PSUs to be of trapping-limited type. It means that any improvements of the molecular structure of their PSUs cannot noticeably increase the overall rate constant of excitation delivery from antenna BChls to reaction centers (RCs).Abbreviations PSUs photosynthetic units - RCs reaction centers - Chl chlorophyll - BChl bacteriochlorophyll - R intermolecular distance, e - quantum yields of the primary excitation trapping and wasteful losses respectively - fl excitation and fluorescence lifetimes respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号