首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological transformation of hermit crabs into crab‐like king crabs in the evolution of decapod crustaceans represents a remarkable case of carcinization or evolutionary shaping into a crab‐like form. In this study, we focus on internal organs such as the hemolymph vascular system and adjacent anatomical structures of several Recent hermit crab (Paguridae) and king crab (Lithodidae) species. There are various correspondences in the morphology of the arterial systems in the dorsal cephalothorax of the two taxa, especially with regard to the anterior aorta, anterior lateral arteries, and hepatic arteries. In the pleon, the posterior aorta in both taxa displays a proximal bifurcation and follows an asymmetrical course. The ventral vessel system, on the other hand, which mainly supplies the limbs, differs significantly between the taxa, with pagurids displaying the plesiomorphic condition. The pattern of the ventral vessel system in Lithodidae is influenced by morphological transformations of integumental structures during carcinization. One of these transformations was the broadening of the sternites, which resulted in a widening of the space between the endosternites. In addition, changes in the morphology of the endophragmal skeleton in Lithodidae led to an increase in the potential for intraspecific variability and interspecific variation in the arterial branching pattern. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The Anomura presents the greatest degree of morphological disparity in the decapod Crustacea, with body forms ranging from the symmetrical and asymmetrical hermit crabs to squat lobsters and king crabs. The phylogeny of the anomurans has been fraught with controversy. Recent debate has focused primarily on the phenomenon of carcinization, the evolution of crab-like form from a non-crab-like ancestor, focused chiefly on derivation of king crabs from asymmetrical hermit crabs--the "hermit to king" hypothesis. We show by phylogenetic analysis of five nuclear protein-coding gene sequences that hermit crabs have a single origin, but surprisingly, that almost all other major clades and body forms within the Anomura, are derived from within the hermit crabs. The crab-like form and squat lobster form have each evolved at least twice from separate symmetrical hermit crab ancestors. In each case, a carcinization trend can be posited via a transition series from the initial symmetrical long-tailed hermit crab form, through the intermediate squat lobster or asymmetrical hermit crab form, to the final crab-like form. Adaptation to dextral shell habitation evolved at least twice, once in an exclusively deep-water clade and once in the common ancestor of all other asymmetrical hermit crabs (from which king crabs are derived). These remarkable cases of parallelism suggest considerable phenotypic flexibility within the hermit crab ground plan, with a general tendency toward carcinization. Rather than having a separate origin from other major clades, hermit crabs have given rise to most other major anomuran body types.  相似文献   

3.
The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions.  相似文献   

4.
Summary Photosensitivity in the terminal abdominal ganglion (G5) of an anomuran, the squat lobsterGalathea strigosa (Crustacea, Decapoda, Anomura), is described. In contrast to the caudal photoreceptors (CPRs) of long-tailed natantid and macruran decapod crustaceans, the caudal photosensitive elements in G5 inG. strigosa apparently lack the conventional spiking rostral conduction pathways to the thoracic ganglia, and instead make their output connections to a bilateral pair of tonic flexor motoneurones originating within the caudal ganglion itself. These flexor motoneurones modulate the activity of two bilaterally paired uropod coxopodite tonic flexor muscles. This photomodulated motoneurone (PMMN) activity is not abolished by sectioning the abdominal nerve cord anterior to G5. The pattern of photosensitivity, while differing from that shown by other CPRs, resembles instead the pattern attributed to photosensitive interneurones (PSIs) of rostral abdominal ganglia of crayfish and other long-tailed decapod crustaceans.The caudal PSIs inG. strigosa appear to be involved in the postural control of the tail-fan as it is held flexed against the cephalothorax.  相似文献   

5.
The invasive green crab, Carcinus maenas, has recently expanded its range into the Southern Gulf of St. Lawrence, where there is potential for substantial niche overlap with juvenile American lobsters, Homarus americanus. We used two experiments to elicit, record and analyze the agonistic interactions of adult green crabs (carapace width of 63-75 mm) and sub-adult (carapace length of 55-70 mm) lobsters. The first experiment gave each animal equal access to a limited food resource. The green crabs were first to the food in significantly more trials, spent a significantly greater proportion of time with the food, and were able to successfully defend the food from attacks by the heavier lobsters. In the second experiment, we allowed the lobsters to gain possession and initiate feeding on the food before releasing the green crabs. In these trials, the lobsters spent significantly more time with the food, and were able to defend the food from the green crabs. The results of both experiments are discussed in the context of game theory. The different behaviour of the crustaceans in the two experiments is consistent with the “bourgeois” strategy in a hawk and dove game simulation. With this strategy, an animal acts like a hawk if in possession of a resource, but acts like a dove if the other animal is in possession of the resource. The fact that the green crabs were able to physically compete with, and in many cases dominate the larger, heavier lobsters supports the potential for competitive impacts of green crabs on sub-adult lobsters.  相似文献   

6.
Interspecific competition is assumed to have a strong influence on the population dynamics of competing species, but is not easily demonstrated for mobile species in the wild. In the Florida Keys (USA), anecdotal observations have long pointed to an inverse relationship in abundance of two large decapod crustaceans found co-occurring in hard-bottom habitat, the stone crab Menippe mercenaria and the Caribbean spiny lobster Panulirus argus. We used them to explicitly test whether competition for a renewable resource (shelter) can drive the abundance and distribution of the inferior competitor. We first explored this relationship in shelter competition mesocosm experiments to determine the competitively dominant species. Results showed that stone crabs are clearly the dominant competitors regardless of the number of lobsters present, the presence of co-sheltering species such as the spider crab, Damithrax spinosissimus, or the order of introduction of competitors into the mesocosm. We also found that lobsters use chemical cues from stone crabs to detect and avoid them. We then tested the ramifications of this competitive dominance in the field by manipulating stone crab abundance and then tracking the abundance and distribution of spiny lobsters through time. Increased stone crab abundance immediately resulted in decreased lobster abundance and increased aggregation. The opposite occurred on sites where stone crabs were removed. When we stopped removing stone crabs from these sites, they soon returned and lobster abundance decreased. This study explicitly demonstrated that interspecific competition can drive population dynamics between these species, and ultimately, community composition in these shallow water habitats.  相似文献   

7.
The European green crab (Carcinus maenas) is a newly invasive species in Newfoundland, where it has likely been present for ≤15 years. The green crab has been found in stomach contents of American lobster (Homarus americanus) in New England and Nova Scotia, Canada, but predation on this species has not yet been quantified in Newfoundland. We conducted feeding experiments to determine whether lobsters from Newfoundland were as likely as those from Nova Scotia (which have coexisted with green crabs for >60 years) to recognize and prey upon this new species. We also performed experiments to determine whether green crabs reach a size refuge from predation and whether factors including starvation, availability of alternate food sources, or habitat complexity would influence the probability of lobster attacking or feeding on green crabs. In our trials, lobster origin had no significant effect on crab predation; lobsters, irrespective of origin, were more likely to consume small (<40 mm carapace width [CW]) and medium (40–65 mm CW) crabs than larger (>65 mm CW) ones. Nevertheless, even small lobsters (73–76 mm carapace length, 300 g) were able to kill and consume the largest green crabs (78 mm CW, 100 g). Green crabs were less likely to be attacked or eaten when an alternative food source was present, suggesting that the lobsters were preying on the crabs, rather than simply killing them in a dispute over territory. The addition of a shelter provided a refuge for the green crabs; however, the crabs were only able to avoid being injured or eaten if this shelter was structurally complex. The green crab is slowly spreading westward around the island of Newfoundland, and so its long‐term effects, interactions with other organisms, and contribution to the diet of Newfoundland lobsters remain to be seen.  相似文献   

8.
The barnacles (Crustacea, Cirripedia) consist of three well-defined orders: the conventional filter-feeding barnacles (Thoracica), the burrowing barnacles (Acrothoracica), and the parasitic barnacles (Rhizocephala). Thoracica and Acrothoracica feed by catching food particles from the surrounding seawater using their thoracic appendages while members of Rhizocephala are exclusively parasitic. The parasite consists of a sac-shaped, external reproductive organ situated on the abdomen of its crustacean host and a nutrient-absorbing root system embedded into the heamolymph of the host. In order to resolve the phylogenetic relationship of the order Rhizocephala and elucidate the evolution of the different life history strategies found within the Rhizocephala, we have performed the first comprehensive phylogenetic analysis of the group. Our results indicate that Rhizocephala is monophyletic with a filter-feeding barnacle-like ancestor. The host-infective stage, the kentrogon larva, inserted in the lifecycle of the rhizocephalan suborder, Kentrogonida, is shown to be ancestral and most likely a homologue of the juvenile stage of a conventional thoracican barnacle. The mode of host inoculation found in the suborder Akentrogonida, where the last pelagic larval stage directly injects the parasitic material into the heamolymph of the host is derived, and has evolved only once within the Rhizocephala. Lastly, our results show that the ancestral host for extant rhizocephalans appears to be the anomuran crustaceans (Anomura), which includes hermit crabs and squat lobsters.  相似文献   

9.
The family Galatheidae is among the most diverse families of anomuran decapod crustaceans, and the South‐West Pacific is a biodiversity hot spot for these squat lobsters. Attempts to clarify the taxonomic and evolutionary relationships of the Galatheidae on the basis of morphological and molecular data have revealed the existence of several cryptic species, differentiated only by subtle morphological characters. Despite these efforts, however, relationships among genera are poorly understood, and the family is in need of a detailed systematic review. In this study, we assess material collected in different surveys conducted in the Solomon Islands, as well as comparative material from the Fiji Islands, by examining both the morphology of the specimens and two mitochondrial markers (cytochrome oxidase subunit I, COI, and 16S rRNA). These two sources of data revealed the existence of eight new species of squat lobster, four of which were ascribed to the genus Munida, two to the genus Paramunida, one to the genus Plesionida, and the last species was ascribed to the genus Agononida. These eight species are described along with phylogenetic relationships at the genus level. Our findings support the taxonomic status of the new species, yet the phylogenetic relationships are not yet fully resolved. Further molecular analysis of a larger data set of species, and more conserved genes, will help clarify the systematics of this group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 465–493.  相似文献   

10.
The ecological and physiological significance of body size is well recognized. However, key macroevolutionary questions regarding the dependency of body size trends on the taxonomic scale of analysis and the role of environment in controlling long-term evolution of body size are largely unknown. Here, we evaluate these issues for decapod crustaceans, a group that diversified in the Mesozoic. A compilation of body size data for 792 brachyuran crab and lobster species reveals that their maximum, mean and median body size increased, but no increase in minimum size was observed. This increase is not expressed within lineages, but is rather a product of the appearance and/or diversification of new clades of larger, primarily burrowing to shelter-seeking decapods. This argues against directional selective pressures within lineages. Rather, the trend is a macroevolutionary consequence of species sorting: preferential origination of new decapod clades with intrinsically larger body sizes. Furthermore, body size evolution appears to have been habitat-controlled. In the Cretaceous, reef-associated crabs became markedly smaller than those in other habitats, a pattern that persists today. The long-term increase in body size of crabs and lobsters, coupled with their increased diversity and abundance, suggests that their ecological impact may have increased over evolutionary time.  相似文献   

11.
Carcinization, the evolution of a crab–like morphology, has occurred in many hermit crabs. Pagurus hirsutiusculus hermit crabs exhibit geographic variation in traits associated with carcinization. Measurements derived from image analysis of P. hirsutiusculus specimens from geographic locations along the Pacific coast of North America show that Alaskan specimens: (1) are larger, (2) exhibit reduced snail shell–living, and (3) have relatively broader anterior carapaces than southern Californian specimens. This geographic variation may provide general insight into carcinization and the evolution of shell loss in hermit crabs.  相似文献   

12.
We present a cladistic analysis of the Anomala based on 66 ingroup species and 5 outgroup representatives. Based on a comparative analysis of the morphology of the foregut we scored 124 characters related to size, shape, and fusion of foregut ossicles and other foregut structures. Our parsimony analysis resulted in 30 equally parsimonious trees which differ mainly at the lower hierarchical level. Our study reveals two large clades within Anomala. One large clade consists of Galatheoidea and Chirostyloidea. The internal relationships show a monophyletic Porcellanidae nested within a group comprising paraphyletic Galatheidae, and Munididae as well as Munidopsidae. The other large clade contains Aegla as sister group to a monophyletic group consisting of the Hippoidea and a clade formed by Lomis and the Paguroidea. Coenobitidae are nested within paraphyletic Diogenidae and Lithodidae are nested within paraphyletic Paguridae. The results are discussed in the context of other morphological and molecular analyses. Furthermore, some aspects of carcinization are touched upon; in particular, an anomalan stem species with a, at least to some extent, ventrally folded pleon is suggested.  相似文献   

13.
Abstract: Decapod crustacean material collected recently from the lower Callovian (Middle Jurassic) in Maine‐et‐Loire (north‐west France) comprises two new species of prosopid and one new species of tanidromitid crabs, of the genera Nodoprosopon and Tanidromites, respectively. Also represented in this faunule is a probable paguroid anomuran, in the form of isolated chelae here assigned to the genus Orhomalus, as well as appendicular remains of unknown affinity; some of the latter might belong to prosopid crabs. These anomurans and brachyurans co‐occur with a diverse benthic fauna in limestones with abundant iron ooids; their main interest lies in the fact that they add valuable data to the rather poor record of Middle Jurassic decapod crustaceans.  相似文献   

14.
Invasive species are considered one of the major threats to biological diversity, and they can negatively impact species of particular ecological and/or economic importance. In this study, we investigate the potential threat that the European green crab, Carcinus maenas, represents to sub-adult lobsters, Homarus americanus, in Passamaquoddy Bay, Canada, northwest Atlantic. We conducted transect surveys using SCUBA diving to evaluate spatial overlap between these species inside, and immediately adjacent to, a lobster nursery area, and ran two laboratory experiments to investigate interactions between them in conditions of limited food and shelter availability. We found marked spatial overlap between these species in nature, particularly between adult green crabs and sub-adult lobsters in the shallower parts of the nursery area. It was not uncommon to see green crabs and sub-adult lobsters less than 1-2 m from one another, and we estimated mean nearest-neighbor values as low as 0.5-1 m on certain transects and months, with a grand mean of 5.17 ± 1.62 m (SE). Monte Carlo randomization of positional data revealed that green crabs and lobsters were randomly distributed relative to one another; individuals of one species did not seem to aggregate or segregate relative to individuals of the other species. In the lab, green crabs did not negatively affect survival (one exception), growth, activity, feeding, or shelter use of sub-adult lobsters. In fact, sub-adult lobsters regularly preyed upon green crabs in the first lab experiment, where heterospecific individuals were matched for body mass. Our results suggest that green crabs do not pose a significant threat to sub-adult lobsters in Passamaquoddy Bay, and may in fact represent a food subsidy for them.  相似文献   

15.
16.
Theory predicts marked sexual dimorphism in terms of body size and body structures used as weapons (e.g. chelipeds) in gonochoric species with intense male sexual competition for receptive females and reduced or no sexual dimorphism in species where competition among males is trivial. We tested this hypothesis using a pair of closely‐related species of symbiotic porcelain crabs as a model. In one species that inhabits sea anemones solitarily, competition among males for receptive females is unimportant. In a second species that dwells as dense aggregations on sea urchins, male–male competition for sexual partners is recurrent. We expected considerable sexual dimorphism in body size and weaponry in the urchin‐dwelling crab and reduced sexual dimorphism in the anemone‐dwelling crab. In agreement with expectations, in the urchin‐dwelling crab, male body size was, on average, larger than that of females and males invested considerably more to cheliped length than females. Also supporting theoretical considerations, in the anemone‐dwelling crab, sexual dimorphism in terms of body size was not detected and differences between the sexes in investment to cheliped length were minor. Interestingly, chelipeds were more developed both in males and females of the anemone‐dwelling crab than in the urchin‐dwelling crab as a result of the importance of these structures for monopolization of their naturally scarce anemone hosts. Another difference between the studied species was the existence of two clearly distinguishable ontogenetic phases in males of the urchin‐dwelling crab but not in males of the anemone‐dwelling crab. Whether the two different male morphs display different male reproductive strategies in the urchin‐dwelling crab remains to be addressed. Other conditions that might additionally explain the observed differences in sexual dimorphism (e.g. female mate choice) between the studied species remain to be explored. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 548–558.  相似文献   

17.
18.
Performance data for the claws of six sympatric species of Cancer crabs confirmed a puzzling pattern reported previously for two other decapod crustaceans (stone crabs, Menippe mercenaria, and lobsters, Homarus americanus): Although biting forces increased, maximum muscle stresses (force per unit area) declined with increasing claw size. The negative allometry of muscle stress and the stress at a given claw size were fairly consistent within and among Cancer species despite significant differences in adult body size and relative claw size, but were not consistent among decapod genera. Therefore, claw height can be used as a reliable predictor of maximum biting force for the genus Cancer, but must be used with caution as a predictor of maximum biting force in wider evolutionary and biogeographical comparisons of decapods. The decline in maximum muscle stress with increasing claw size in Cancer crabs contrasts with the pattern in several other claw traits. Significantly, three traits that affect maximal biting force increased intraspecifically with increasing claw size: relative claw size, mechanical advantage, and sarcomere length of the closer muscle. Closer apodeme area and angle of pinnation of the closer muscle fibers varied isometrically with claw size. The concordant behavior of these traits suggests selection for higher biting forces in larger crabs. The contrast between the size dependence of muscle stress (negative allometry) and the remaining claw traits (isometry or positive allometry) strongly suggests that an as yet unidentified constraint impairs muscle performance in larger claws. The negative allometry of muscle stress in two distantly related taxa (stone crabs and lobsters) further suggests this constraint may be widespread in decapod crustaceans. The implications of this performance constraint for the evolution of claw size and the "arms-race" between decapod predators and their hard-shelled prey is discussed.  相似文献   

19.
Global biodiversity patterns in deep time can only be understood fully when the relative preservation potential of each clade is known. The relative preservation potential of marine arthropod clades, a diverse and ecologically important component of modern and past ecosystems, is poorly known. We tackled this issue by carrying out a 205‐day long comprehensive, comparative, taphonomic experiment in a laboratory by scoring up to ten taphonomic characters for multiple specimens of seven crustacean and one chelicerate species (two true crabs, one shrimp, one lobster, one hermit crab, one stomatopod, one barnacle and one horseshoe crab). Although the results are preliminary because we used a single experimental setup and algal growth partially hampered observations, some parts of hermit crabs, stomatopods, swimming crabs and barnacles decayed slowly relative to other parts, implying differential preservation potentials within species, largely consistent with the fossil record of these groups. An inferred parasitic isopod, manifested by a bopyriform swelling within a hermit crab carapace, decayed relatively fast. We found limited variation in the decay rate between conspecifics, and we did not observe size‐related trends in decay rate. Conversely, substantial differences in the decay rate between species were seen after c. 50 days, with shrimps and stomatopods decaying fastest, suggesting a relatively low preservation potential, whereas the lobster, calico crabs, horseshoe crabs and barnacles showed relatively slow decay rates, suggesting a higher preservation potential. These results are supported by two modern and fossil record‐based preservation potential metrics that are significantly correlated to decay rate ranks. Furthermore, we speculate that stemward slippage may not be ubiquitous in marine arthropods. Our results imply that diversity studies of true crabs, lobsters, horseshoe crabs and barnacles are more likely to yield patterns that are closer to their true biodiversity patterns than those for stomatopods, shrimps and hermit crabs.  相似文献   

20.
In decapod crustaceans, molt hormone (ecdysone) production by Y-organs is suppressed by an eyestalk neurosecretory product, molt-inhibiting hormone (MIH). Environmental stressors are known to delay or prevent molting in crabs. The present study assesses the function of the MIH-Y-organ neuroendocrine system in the crab Cancer antennarius under conditions of daily handling stress. After three days, stressed crabs showed significant suppression of hemolymph ecdysteroid levels, which continued to fall to 20% of controls by day 14. Ecdysteroid titers of stressed crabs returned to prestress levels seven days after stress termination. Ecdysteroid levels in de-eyestalked (DES) crabs rose 160% within 48 hr post-DES. Stressing DES crabs over 16 subsequent days did not significantly alter ecdysteroid levels compared with unstressed DES controls. Handling stress thus depresses hemolymph ecdysteroid levels in the crab, a response that is mediated by eyestalks and appears to result from stress-induced MIH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号