共查询到20条相似文献,搜索用时 9 毫秒
1.
The arrangement of the musculature and connective tissues of the buccal mass of the coleoid cephalopods Octopus bimaculoides, Sepia officinalis, and Loliguncula brevis was examined using dissection and histology. Serial sections in three mutually perpendicular planes were used to identify the muscles and connective tissues responsible for beak movements and stability and to describe their morphology and fiber trajectories. Four major beak muscles were identified: the anterior, posterior, superior, and lateral mandibular muscles. The anterior, posterior, and superior mandibular muscles connect the upper beak and the lower beak. Although the lateral mandibular muscles originate on the upper beak, they do not connect to the lower beak and instead insert on a connective tissue sheath surrounding the buccal mass. Examination of the fibers of the lateral mandibular muscles reveals that they have the organization of a muscular hydrostat, with muscle fibers oriented in three mutually perpendicular orientations. Although the beaks are capable of complex opening, closing, and shearing movements, they do not contact one another and are instead connected only by the musculature of the buccal mass. Based on the morphological analysis and observations of freshly dissected beaks undergoing the stereotyped bite cycle, the functional role of the beak muscles is hypothesized. The anterior and superior mandibular muscles are likely responsible for beak closing and shearing movements. The posterior mandibular muscle is likely also involved in beak closing, but may act synergistically with the lateral mandibular muscles to open the beaks. The lateral mandibular muscles may use a muscular-hydrostatic mechanism to control the location of the pivot between the beaks and to generate the force required for beak opening. The lack of contact between the beaks and the morphology of the lateral mandibular muscles suggests that the buccal mass of coleoid cephalopods may represent a previously unexamined flexible joint mechanism. The term "muscle articulation" is proposed here to denote the importance of the musculature in the function of such a joint. 相似文献
2.
A jaw joint between the squamosal and dentary is a defining feature of mammals and is referred to as the temporomandibular joint (TMJ) in humans. Driven by changes in dentition and jaw musculature, this new joint evolved early in the mammalian ancestral lineage and permitted the transference of the ancestral jaw joint into the middle ear. The fossil record demonstrates the steps in the cynodont lineage that led to the acquisition of the TMJ, including the expansion of the dentary bone, formation of the coronoid process, and initial contact between the dentary and squamosal. From a developmental perspective, the components of the TMJ form through tissue interactions of muscle and skeletal elements, as well as through interaction between the jaw and the cranial base, with the signals involved in these interactions being both biomechanical and biochemical. In this review, we discuss the development of the TMJ in an evolutionary context. We describe the evolution of the TMJ in the fossil record and the development of the TMJ in embryonic development. We address the formation of key elements of the TMJ and how knowledge from developmental biology can inform our understanding of TMJ evolution. 相似文献
3.
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject’s upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. 相似文献
4.
Haploinsufficiency of myostatin protects against aging‐related declines in muscle function and enhances the longevity of mice 下载免费PDF全文
Christopher L. Mendias Konstantin I. Bakhurin Jonathan P. Gumucio Mark V. Shallal‐Ayzin Carol S. Davis John A. Faulkner 《Aging cell》2015,14(4):704-706
The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28–30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN+/− and MSTN−/− mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN+/+ and MSTN−/− mice, MSTN+/− mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. 相似文献
5.
The expression and functional activities of smooth muscle myosin and non‐muscle myosin isoforms in rat prostate 下载免费PDF全文
Ping Chen Jing Yin Yu‐ming Guo He Xiao Xing‐huan Wang Michael E. DiSanto Xin‐hua Zhang 《Journal of cellular and molecular medicine》2018,22(1):576-588
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non‐muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM‐A/B) and myosin light chain 17 isoforms (LC17a/b), and isoform ratios were determined via competitive RT‐PCR. SM MHC and NM MHC isoforms (NMMHC‐A, NMMHC‐B and NMMHC‐C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM‐A/SM‐B at the mRNA level. Meanwhile, isoforms of NMMHC‐A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC‐A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre‐contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction. 相似文献
6.
7.
Andrea B. Taylor Carolyn M. Eng Fred C. Anapol Christopher J. Vinyard 《American journal of physical anthropology》2009,139(3):353-367
Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton‐top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree‐gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade‐off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross‐sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer‐fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade‐off between muscle excursion/contraction velocity and muscle force suggests that primate jaw‐muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Monkol Lek Kate G. R. Quinlan Kathryn N. North 《BioEssays : news and reviews in molecular, cellular and developmental biology》2010,32(1):17-25
In humans, there are two skeletal muscle α‐actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in α‐actinin‐3 due to the common ACTN3 R577X polymorphism. The α‐actinins are an ancient family of actin‐binding proteins with structural, signalling and metabolic functions. The skeletal muscle α‐actinins diverged ~250–300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why α‐actinin‐2 cannot completely compensate for the absence of α‐actinin‐3. This paper focuses on the role of skeletal muscle α‐actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms. 相似文献
9.
10.
We found out a new protein from natural actomyosin prepared from adductor muscle of Hokki clam, bivalve shell. We isolated this protein and determined some properties. It has a large molecular weight (230 kDa) and the star diagram of amino acid composition was very similar to that of paramyosin (110 kDa). When this protein was added to Hokki clam myosin, the Mg2+-ATPase activity was more activated in the presence of 10-7 M Ca2+ and further inhibited in the presence of 10-4 M Ca2+ as compared with those of myosin. From these results, we suggest that Hokki clam adductor muscle contains another myosin-linked regulatory protein, myonin, which is different from the myosin-linked system, the myosin light chain-linked system. We named this protein myonin. 相似文献
11.
Insects have evolved mechanical form and function over millions of years. Ants, in particular, can lift and carry heavy loads relative to their body mass. Loads are lifted with the mouthparts, transferred through the neck joint to the thorax, and distributed over six legs and tarsi (feet) that anchor to the supporting surface. While previous research has explored attachment mechanisms of the tarsi, little is known about the relation between the mechanical function and the structural design and material properties of the ant. This study focuses on the neck – the single joint that withstands the full load capacity. We combine mechanical testing, computed tomography (CT), scanning electron microscopy (SEM), and computational modeling to better understand the mechanical structure–function relation of the neck joint of the ant species Formica exsectoides (Allegheny mound ant). Our mechanical testing results show that the soft tissue forming the neck joint of F. exsectoides exhibits an elastic modulus of 230±140 MPa and can withstand ~5000 times the ant's weight. We developed a 3-dimensional (3D) model of the structural components of the neck joint for simulation of mechanical behavior. Finite element (FE) simulations reveal the neck-to-head transition where the soft membrane material meets the hard exoskeleton as the critical point for failure of the neck joint, which is consistent with our experiments. Our results further indicate that the neck joint structure exhibits anisotropic mechanical behavior with the highest stiffness occurring when the load path is aligned with the axis of the neck. 相似文献
12.
Summary The fine structure of the red and white myotomal muscles of a marine teleost, the coalfish Gadus virens, has been examined and ultrastructural measurements and analyses carried out. The sarcomere lengths of the red and white fibres were found to be 1.60 minimum, 1.82 maximum and 1.70 minimum, 1.85 maximum, respectively. No significant difference was found between the red and white fibres in their percentage of sarcoplasmic reticulum and T system. Both were found to have regularly occurring triads at the Z disk level, to have distinctive M lines and to be multiply innervated. Ultrastructurally the two fibres can be distinguished by the thicker Z line and more abundant mitochondria of the red fibre, and by the ribbon-shaped peripheral myofibrils of the white fibres. The structure of the fibres in these two types of muscle is discussed in relation to their possible role in swimming.This work was supported by a research grant from the National Environmental Research Council. 相似文献
13.
Therapeutic effect of intra‐articular injection of ribbon‐type decoy oligonucleotides for hypoxia inducible factor‐1 on joint contracture in an immobilized knee animal model 下载免费PDF全文
Daisuke Sotobayashi Hirohisa Kawahata Natsuki Anada Toshio Ogihara Ryuichi Morishita Motokuni Aoki 《The journal of gene medicine》2016,18(8):180-192
14.
Intra‐articular injection of a substance P inhibitor affects gene expression in a joint contracture model 下载免费PDF全文
Mark E. Morrey Joaquin Sanchez‐Sotelo Eric A. Lewallen Kai‐Nan An Diane E. Grill Scott P. Steinmann Jie J. Yao Christopher G. Salib William H. Trousdale Nicolas Reina Hilal M. Kremers David G. Lewallen Andre J. van Wijnen Matthew P. Abdel 《Journal of cellular biochemistry》2018,119(2):1326-1336
15.
Yoo Jeong Lee Gyu Hee Kim Sang Ick Park Joo Hyun Lim 《Journal of cellular and molecular medicine》2020,24(1):899-909
Muscle atrophy is closely associated with many diseases, including diabetes and cardiac failure. Growing evidence has shown that mitochondrial dysfunction is related to muscle atrophy; however, the underlying mechanisms are still unclear. To elucidate how mitochondrial dysfunction causes muscle atrophy, we used hindlimb‐immobilized mice. Mitochondrial function is optimized by balancing mitochondrial dynamics, and we observed that this balance shifted towards mitochondrial fission and that MuRF1 and atrogin‐1 expression levels were elevated in these mice. We also found that the expression of yeast mitochondrial escape 1‐like ATPase (Yme1L), a mitochondrial AAA protease was significantly reduced both in hindlimb‐immobilized mice and carbonyl cyanide m‐chlorophenylhydrazone (CCCP)‐treated C2C12 myotubes. When Yme1L was depleted in myotubes, the short form of optic atrophy 1 (Opa1) accumulated, leading to mitochondrial fragmentation. Moreover, a loss of Yme1L, but not of LonP1, activated AMPK and FoxO3a and concomitantly increased MuRF1 in C2C12 myotubes. Intriguingly, the expression of myostatin, a myokine responsible for muscle protein degradation, was significantly increased by the transient knock‐down of Yme1L. Taken together, our results suggest that a deficiency in Yme1L and the consequential imbalance in mitochondrial dynamics result in the activation of FoxO3a and myostatin, which contribute to the pathological state of muscle atrophy. 相似文献
16.
17.
PGC‐1α affects aging‐related changes in muscle and motor function by modulating specific exercise‐mediated changes in old mice 下载免费PDF全文
The age‐related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age‐associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC‐1α in the therapeutic effect of exercise in aging. Intriguingly, PGC‐1α muscle‐specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging‐related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC‐1α modulation. Surprisingly, we discovered that muscle PGC‐1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC‐1α. 相似文献
18.
Hidemi Misawa Daijiro Inomata Miseri Kikuchi Sae Maruyama Yasuhiro Moriwaki Takashi Okuda Nobuyuki Nukina Tomoyuki Yamanaka 《Genesis (New York, N.Y. : 2000)》2016,54(11):568-572
VAChT‐Cre.Fast and VAChT‐Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT‐Cre lines with a reporter line, CAG‐Syp/tdTomato, in which synaptophysin‐tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co‐localized with osteopontin, a recently discovered motor neuron marker for slow‐twitch fatigue‐resistant (S) and fast‐twitch fatigue‐resistant (FR) types. The fluorescence did not preferentially co‐localize with matrix metalloproteinase‐9, a marker for fast‐twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT‐Cre lines are Cre‐drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT‐Cre.Fast and VAChT‐Cre.Slow to VAChT‐Cre.Early and VAChT‐Cre.Late, respectively. The mouse lines will be useful tools to study slow‐type motor neurons, in relation to physiology and pathology. 相似文献
19.
Lindsay M. Wohlers Sean M. Sweeney Christopher W. Ward Richard M. Lovering Espen E. Spangenburg 《Journal of cellular biochemistry》2009,107(1):171-178
Recent evidence suggests that ovarian hormones contribute to altered function of skeletal muscle, however the signaling processes thought to regulate muscle function remain undefined in females. Thus, the purpose of this investigation is to determine if ovarian hormone status is critical for contraction‐induced activation of AMPK or MAPK in skeletal muscle. Female mice were divided into two groups, ovariectomy (OVX) and SHAM, which were then subjected to in situ isometric contractile protocols. AMPK, ERK 1/2, p38, and JNK phosphorylation were measured in the control and contracting limb. In the in situ protocol, OVX muscles were significantly more resistant to fatigue compared to the SHAM animals. In addition, the muscles from OVX mice demonstrated significantly lower levels of normalized AMPK phosphorylation at rest. AMPK phosphorylation was not increased in the muscles from SHAM mice after the in situ contractile protocol, while the OVX demonstrated significant increases in AMPK phosphorylation. After contraction, normalized ERK2 phosphorylation was significantly higher in the OVX group compared to the SHAM group. Both p38 and JNK phosphorylation increased in response to contraction; but no group differences were detected. A second set of SHAM and OVX animals were subjected to fatigue stimulated under in vitro conditions. Significant increases in AMPK and ERK2 phosphorylation were detected, but no differences were found between groups. In conclusion, removal of the ovaries results in different responses to contraction‐induced changes in phosphorylation of AMPK and ERK2 in female mice and suggests hormones secreted from the ovaries significantly impacts cellular signaling in skeletal muscle. J. Cell. Biochem. 107: 171–178, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
20.
Úrsula Maria C. Bastos Ivone de Andrade Rosa John D. Teixeira Graciele Gonalves Manoel L. Costa Luis Eduardo M. Quintas Claudia Mermelstein 《Cell biology international》2019,43(12):1425-1434
β‐Adrenergic signaling regulates many physiological processes in skeletal muscles. A wealth of evidence has shown that β‐agonists can increase skeletal muscle mass in vertebrates. Nevertheless, to date, the specific role of β‐adrenergic receptors in different cell phenotypes (myoblasts, fibroblasts, and myotubes) and during the different steps of embryonic skeletal muscle differentiation has not been studied. Therefore, here we address this question through the analysis of embryonic chick primary cultures of skeletal muscle cells during the formation of multinucleated myotubes. We used isoproterenol (ISO), a β‐adrenergic receptor agonist, to activate the β‐adrenergic signaling and quantified several aspects of muscle differentiation. ISO induced an increase in myoblast proliferation, in the percentage of Pax7‐positive myoblasts and in the size of skeletal muscle fibers, suggesting that ISO activates a hyperplasic and hypertrophic muscle response. Interestingly, treatment with ISO did not alter the number of fibroblast cells, suggesting that ISO effects are specific to muscle cells in the case of chick myogenic cell culture. We also show that rapamycin, an inhibitor of the mammalian target of rapamycin signaling pathway, did not prevent the effects of ISO on chick muscle fiber size. The collection of these results provides new insights into the role of β‐adrenergic signaling during skeletal muscle proliferation and differentiation and specifically in the regulation of skeletal muscle hyperplasia and hypertrophy. 相似文献