首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Many anuran species are characterized by sexually dimorphic skin glands. These glands often are concentrated on specific areas, such as the mental region, flanks, or the nuptial pads. We studied the histology and histochemistry of mental and lateral glands in Hypsiboas punctatus, and compared them to skin from other body regions. We describe four types of dermal glands, two types of mucous and two types of serous glands. The mucous glands are formed by a single layered epithelium. The mucocytes surrounding a central lumen are filled with polyhedral granules. Ordinary mucous glands are small sized glands with cubical epithelium, mucoid content, and small granules. Specialized mucous glands are characterized by a larger size, a columnar epithelium, a proteinaceous content and larger granules. Both types of serous glands are syncytial and share some structural features including size, shape, and morphology of secretory granules. However, ordinary and specialized serous glands differ in their histochemical properties, size and appearance of secretory granules, and glandular outlets. The specialized type of mucous glands in H. punctatus resembles most SDSGs described in anurans, whereas the presence of specialized serous glands that are sexually dimorphic is less common. Both specialized glands occur only in mental and lateral regions of males, whereas ordinary mucous and ordinary serous glands occur in males and females. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Salamanders in the family Plethodontidae exhibit a unique tail‐straddle walk during courtship that can include the use of sexually dimorphic mental and caudal courtship glands. This study presents novel histological and fine structure data on mental glands and caudal courtship glands in Plethodon mississippi, Desmognathus conanti and Eurycea quadridigitata using both light microscopy and scanning electron microscopy. This study represents the first use of scanning electron microscopy to observe these glands. Both mental and caudal courtship glands were observed to vary seasonally in gland diameter and histology according to the breeding season of each species. Morphological variation was observed across the three species studied in both clustering and relative size of the glands compared to neighbouring mucous and granular glands. Hypertrophied mental glands are larger than mucous or granular glands in all species, but relationships among caudal courtship glands and other skin glands vary among species. In E. quadridigitata, active caudal courtship glands are larger than mucous and granular glands, but in D. conanti, caudal courtship glands are similar in size to granular glands and larger than mucous glands. In P. mississippi, caudal courtship glands are scattered among significantly larger granular glands and are similar in size to mucous glands.  相似文献   

4.
A structural and ultrastructural study was carried out on the cutaneous glands in some species of Rana (R. dalmatina, R. iberica, R. italica, R. "esculenta," and R. perezi), giving particular attention to the mucous secretory units. Two different types of mucous glands occur in R. dalmatina, R. iberica, and R. italica. Besides the ordinary mucous units, which are randomly distributed over the body surface in both males and females, a further population of mucous glands was observed on the male dorsal skin. The latter is recognizable by the peculiar morphology of the epithelial cells and some characteristics of the secretory product. Specialized mucous glands are absent in both sexes of R. "esculenta" and R. perezi. The possible adaptive role of the specialized mucous glands is discussed in light of the absence of vocal sacs in males of R. dalmatina, R. iberica, and R. italica. Chemosignals released by sexually dimorphic mucous units may replace vocal communication during the breeding season and so play an important role in female attraction and/or territorial announcement. The morphology and possible function of the specialized mucous glands in the three species of Rana are compared with the breeding glands of other frogs and with the hedonic glands of some urodeles (Salamandridae and Plethodontidae), which are known to produce pheromonal substances during courtship.  相似文献   

5.
Summary The dorsal and subventral esophageal glands and their secretory granules in the root-knot nematodeMeloidogyne incognita changed during parasitism of plants. The subventral esophageal glands shrank and the dorsal gland enlarged with the onset of parasitism. While secretory granules formed by both types of glands were spherical, membrane-bound, and Golgi derived, the granules differed in morphology and size between the two types of glands. Subventral gland extensions in preparasitic second-stage juveniles were packed with secretory granules which varied in diameter from 700–1,100 nm and had a finely granular matrix. Within the matrix of each subventral gland granule was an electron-transparent core that contained minute spherical vesicles. The size and position of the core varied within different granules. Few granules were present in the dorsal gland extension in preparasitic juveniles. The matrix of dorsal gland secretory granules formed during parasitism was homogeneous and more electron-dense than the matrix of subventral gland granules. Subventral gland secretory granules of parasitic juveniles and adult females appeared degenerate.  相似文献   

6.
Abstract. The ribbon‐shaped salivary glands in Bulla striata were studied with light microscopy and transmission electron microscopy (TEM). Secretion is produced in tubules formed by two types of secretory cells, namely granular mucocytes and vacuolated cells, intercalated with ciliated cells. A central longitudinal duct lined by the same cell types collects the secretion and conducts it to the buccal cavity. In granular mucocytes, the nucleus is usually central and the secretory vesicles contain oval‐shaped granular masses attached to the vesicle membrane. Glycogen granules can be very abundant, filling the space around the secretory vesicles. These cells are strongly stained by PAS reaction for polysaccharides. Their secretory vesicles are also stained by Alcian blue, revealing acidic mucopolysaccharides, and the tetrazonium reaction detects proteins in minute spots at the edge of the vesicles, corresponding to the granular masses observed in TEM. Colloidal iron staining for acidic mucopolysaccharides in TEM reveals iron particles in the electron‐lucent region of the vesicles, while the granular masses are free of particles. In vacuolated cells, which are thinner and less abundant than the granular mucocytes, the nucleus is basal and the cytoplasm contains large electron‐lucent vesicles. These vesicles are very weakly colored by light microscopy techniques, but colloidal iron particles could be observed within them. The golf tee‐shaped ciliated cells contain some electron‐dense lysosomes in the apical region. In these cells, the elongated nucleus is subapically located, and bundles of microfibrils are common in the slender cytoplasmic stalk that reaches the basal lamina. The morphological, histochemical, and cytochemical data showed some similarities between salivary glands in B. striata and Aplysia depilans. These similarities could reflect the phylogenetic relationship between cephalaspidean and anaspidean opisthobranchs or result from a convergent adaptation to an identical herbivorous diet.  相似文献   

7.
Ultrastructural cytochemical tests for several enzymes, proteins, carbohydrates, and nucleic acids were conducted on secretory granules o£ dorsal and subventral esophageal glands of preparasitic second-stage juveniles and the dorsal gland of adult females of Meloidogyne incognita. Secretory granules in the subventral glands of juveniles stained positive for acid phosphatase. Peroxidase, DNase, RNase, cellulase, and nucleic acids were not detected in these granules. Secretory granules in the dorsal gland of adult females stained positive for peroxidase (pH 7.6) in < 50% of the tests, Acid phosphatase, β-glucuronidase, DNase, RNase, polyphenoloxidase, cellulase, and carbohydrates were not detected in dorsal gland granules in adult females. Positive staining with cobalt thiocyanate, a stain for amino groups of basic proteins, occurred in secretory granules in the dorsal gland, ribosomes, and chromatin in adult females. Ribosomes, nuclei, and secretory granules of the dorsal gland of adult females intensely stained when incubated in three reagents specific for nucleic acid.  相似文献   

8.
Although gastropods have been crawling through the ocean and on the land for 60 million years, we still know very little about the sticky mucus produced in their foot. Most research has been focused on marine species in particular and, to a lesser extent, on the well‐known terrestrial species Arion vulgaris and Cornu aspersum. Within this study, we aim to characterize the foot anatomy of a smaller representative of the family Helicidae, the banded snail Cepaea hortensis. We are particularly interested in the microanatomy of the foot glands, their position, and the histochemical nature of their secretory content. Characterization of the dorsal foot region of Cepaea hortensis reveals four glands, differing in their size and in the granules produced. Histochemically, three of them react positively for sugars (PAS staining and lectin affinity tests for mannose, glucose and N‐acetyl‐d ‐glucosamine) and acidic proteins (positive Alcian blue and Toluidine blue staining), indicating the presence of acidic glycosaminoglycans. The fourth gland type does not react to any of these dyes. The ventral pedal region includes two different gland types, which are positive for the presence of acidic glycoproteins, with a lectin affinity for mannose only. A comparison with Helix pomatia indicates differences regarding the number of glands and their contents. In Helix, only three gland types are described in the dorsal region of the foot, which show a similar granular appearance but nevertheless differ in their chemical composition. Congruently, there are two gland types in the ventral region in both species, whereas in Helix an additional sugar moiety is found. This raises the question whether these differences between the pedal glandular systems of both helicid species are the result of protection or size‐related adaptations, as they occur in the same habitat.  相似文献   

9.
Currently, sex differences in behavior are believed to result from sexually dimorphic neural circuits in the central nervous system (CNS). Drosophila melanogaster is a common model organism for studying the relationship between brain structure, behavior, and genes. Recent studies of sex‐specific reproductive behaviors in D. melanogaster have addressed the contribution of sexual differences in the CNS to the control of sex‐specific behaviors and the development of sexual dimorphism. For example, sexually dimorphic regions of the CNS are involved in the initiation of male courtship behavior, the generation of the courtship song, and the induction of male‐specific muscles in D. melanogaster. In this review, I discuss recent findings about the contribution of cell death to the formation of sexually dimorphic neural circuitry and the regulation of sex‐specific cell death by two sex determination factors, Fruitless and Doublesex, in Drosophila.  相似文献   

10.
《Zoology (Jena, Germany)》2015,118(5):334-347
Amphibians have evolved a wide variety of mechanisms that provide a certain degree of protection against predators, including camouflage, tail autonomy, encounter behavior and noxious or toxic skin secretions. In addition to these strategies, some amphibians release a glue-like secretion onto the surface of their skin when threatened. While some information regarding the origin and production of these adhesive secretions is available for frogs such as Notaden bennetti, these aspects are only partially understood in salamanders. We contribute to an earlier study and provide additional information regarding the origin, production, and characterization of the adhesive secretion in the red-legged salamander (Plethodon shermani) at a microanatomical level. When stressed, this salamander secretes a milky, viscous liquid from its dorsal and ventral skin. This secretion is extremely adhesive and hardens within seconds upon exposure to air. This study describes two cutaneous gland types (mucous and granular) in the dorsal and ventral epithelial tissue that differ considerably in their secretory content. While the smaller mucous glands contains flocculent to granular material, mostly acidic glycoproteins, the granular glands synthesize various granules of differing size and density that consist of basic proteinaceous material. The results strongly indicate that the secretions of both gland types from the dorsal as well as the ventral side form the adhesive mucus in Plethodon shermani, consisting of basic and acidic glycoproteins, glycoconjugates with mannose and α-l-fucose residues as well as lipid components.  相似文献   

11.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

12.
AtT20 (clone D16V) cells develop long neurite-like processes in the growth cones of which secretory granules containing ACTH accumulate. These secretory granules have an acidic pH. Using acridine orange as a vital stain for acidic organelles, in combination with video-enhanced fluorescence microscopy, and subsequent immunolabeling with rabbit antibodies against ACTH, we have shown that these secretory granules move by saltations along the processes. During saltations velocities of 3 to 5 microns/s are achieved. The majority of the secretory granules move in the anterograde direction but some move retrogradely. The growth cones and processes are the site of extensive endocytosis. Using Lucifer Yellow as a vital stain we have shown that most endosomes move by saltations retrogradely. Movement of both secretory granules and endosomes is dependent upon microtubules. Individual secretory granules or endosomes never reverse the direction of their movement as they traverse the processes. Neutralization of the lumen of these acidic organelles with NH4Cl does not inhibit their movement or change its direction.  相似文献   

13.
In at least four closely related families of the diverse harvestmen lineage Gonyleptoidea, males may possess sexually dimorphic tarsal glands in the swollen tarsomeres of the basitarsus and/or metatarsus of leg I. The first histological and ultrastructural examination of the sexually dimorphic tarsal glands in leg I focused only on Manaosbiidae. In this study, we examine the morphology and ultrastructure of the sexually dimorphic glands, and their associated glandular openings, found in the basitarsus and/or metatarsus of leg I of males representing Cosmetidae, Gonyleptidae, and Cranaidae (glandular openings only). In cosmetids and gonyleptids, the tarsal glands are made up of 20–60 glandular units that form distinct groups within the prolateral and retrolateral half of the tarsomere. Each glandular unit consists of a pair of terminal secretory cells, an intercalary cell wrapped around the receiving canal, and a canal cell tightly wrapped around the length of the conducting canal. Cosmetidae, Gonyleptidae, and Cranaidae exhibit remarkably similar tarsal glands and gland openings although the location of the glands in the leg differs slightly among them. Males of these three families exhibit markedly different glands and glandular openings compared to males of the family Manaosbiidae. The sexually dimorphic tarsal glands may provide an important morphological character for determining phylogenetic relationships among gonyleptoid families. Finally, we provide morphological and ultrastructural data for the common tegumental glands. These data indicate that the sexually dimorphic tarsal glands are strikingly similar to, and may possibly be derived from, the tegumental glands. J. Morphol. 274:1203–1215, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
In anuran amphibians, there is increasing evidence that exocrine glands dispersed throughout the general integument are secondary sex characters (SSC). Following the recent discovery of sexually dimorphic “breeding glands” in the dorsum of male Rana pipiens, we studied the effects of castration and testosterone treatment on the dorsal skin glands of male Xenopus laevis and R. pipiens to determine whether the dorsal breeding glands, or any other dorsal skin glands, are androgen dependent. The dorsal skin glands of X. laevis were unaffected by androgen status. By contrast, in R. pipiens, breeding, mucous, and seromucous glands responded to testosterone stimulation. Mucous glands were significantly (P < 0.05) larger in testosterone-treated frogs than in castrates. There was a large, but statistically insignificant, increase in the size of the dorsal breeding glands. Testosterone treatment also increased the epithelial cell height of breeding and seromucous glands (P < 0.05). In the skins of castrated and testosterone-treated frogs, there was a reciprocal relationship between the abundance of seromucous and breeding glands: in castrates, seromucous glands were abundant and breeding glands virtually absent, whereas in testosterone-treated frogs, breeding glands were abundant and seromucous glands less common. The total number of the two gland types was similar in both treatment groups. Glands that appeared to be intermediate in form between seromucous and breeding glands were observed in some frogs. These data suggest that seromucous glands may be the regressed form of breeding glands in the dorsal skin of R. pipiens and that the dorsal skin of R. pipiens is a SSC. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

16.
Males of the two species of Mertensiella (M. caucasica and M. luschani) possess a tubercle projecting from the skin of the dorsal tail base, the single morphological character that defines the genus. The dorsal tail tubercle functions during courtship, and its role is similar in both species. The tubercle is inserted into the cloaca of the female during ventral amplexus, shortly before the male deposits a spermatophore. Histological examination, however, revealed that the dorsal tubercles differ structurally between the two species. In M. caucasica, the tubercle consists primarily of elongate mucous glands, with granular glands occurring only at the base. Both mucous and granular glands of the tubercle are larger than those in typical skin. Unlike typical skin, however, mucous glands are larger than granular glands. In M. luschani, mucous glands and granular glands occur throughout the tubercle, and the granular glands are larger than the mucous glands, although both types are larger than those in typical skin. The dorsal tubercles of M. caucasica and M. luschani may not be homologous structures and may have resulted from convergent evolution. J Morphol 232:93–105, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Monoclonal antibodies to secretory granules in the dorsal or subventral esophageal glands were generated by injecting BALB/c mice with immunogens from preparasitic second-stage juveniles (J2) of Meloidogyne incognita. Antibodies specific for secretory granules in the J2 subventral esophageal glands or the dorsal gland were identified by indirect immunofluorescence microscopy. Only antibodies that reacted with granules in the J2 dorsal gland reacted with the esophageal gland lobe ofM. incognita adult females. The antibodies also reacted with secretory granules in both types of esophageal glands in M. javanica and M. arenaria J2 but not with granules in esophageal glands of Heterodera glycines J2.  相似文献   

18.
Summary Two groups of cerebral dorsal cells of the pulmonate snail Planorbarius corneus stain positively with antisera raised against synthetic fragments of the B- and C-chain of the molluscan pro-insulin-related prohormone, proMIP-I, of another pulmonate snail, Lymnaea stagnalis. At the light-microscopic level the somata of the dorsal cells and their axons and neurohemal axon terminals in the periphery of the paired median lip nerves are immunoreactive with both antisera. Furthermore, the canopy cells in the lateral lobes of the cerebral ganglia are positive. In addition, MIPB-immunoreactive neurons are found in most other ganglia of the central nervous system. At the ultrastructural level, pale and dark secretory granules are found in somata and axon terminals of the dorsal cells. Dark granules are about 4 times as immunoreactive to both antisera as pale granules. Release of anti-MIPB- and anti-MIPC-immunopositive contents of the secretory granules by exocytosis is apparent in material treated according to the tannic acid method. It is concluded that the dorsal and canopy cells synthesize a molluscan insulin-related peptide that is packed in the cell body into secretory granules and that is subsequently transported to the neurohemal axon terminals and released into the hemolymph by exocytosis. Thus, MIP seems to act as a neurohormone on peripheral targets. On the basis of the analogy between the dorsal cells and the MIP-producing cells in L. stagnalis, it is proposed that the dorsal cells of P. corneus are involved in the control of body growth and associated processes.  相似文献   

19.
Several sexually dimorphic characters of the anal-fin complex in the mormyrid fish, Mormyrus rume proboscirostris, assist during courtship when the male envelops the female's anal fin with its own to form a common spawning pouch (anal-fin reflex). We found that developmental growth and seasonally cycling gonadal activity selectively affect their expression. The structures defining the anal fin undergo a permanent sexually dimorphic transformation at a time when ripe spermatozoa first appear in the testis of young males. However, the expression of a dorsally directed indentation of the posterior ventral body wall, affecting the dorsal margin of the anal fin, appeared to be more plastic as it correlated with the gonadosomatic index, that is, testis size. We surmised that this indentation is influenced by cyclic anabolic action on muscle involved with the execution of the anal-fin reflex.  相似文献   

20.
Renin was localized in the submandibular gland of the adult mouse at light and electron microscopic levels by the unlabeled antibody enzyme method of Sternberger. At the light microscopic level, renin was confined to the granular convoluted tubule (GCT) segment of the gland with considerable variation among GCT cells in intensity of staining. Some GCT cells failed to stain for renin. The pattern of staining was the same in the gland of male and female mice, but in the glands of females GCT segments were smaller and less numerous. At the electron microscopic level, staining for renin was also confined to the GCT cells, and was localized exclusively to the secretory granules. The intensity of staining of the secretory granules within a given GCT cell varied; some cells contained only minimally reactive or negative secretory granules. All other organelles within the GCT cell, except condensing vacuoles, failed to stain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号