首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is evidence that spalacine, tachyoryctine, and myospalacine mole‐rats all communicate with conspecifics through a form of seismic signaling, but the route for the detection of these signals is disputed. It has been proposed that two unusual anatomical adaptations in Spalax allow jaw vibrations to pass to the inner ear via the incus and stapes: a pseudoglenoid (=postglenoid) fossa which accomodates the condylar process of the mandible, and a bony cup, supported by a periotic lamina, through which the incus articulates with the skull. In this study, a combination of dissection and computed tomography was used to examine the ear region in more detail in both Spalax and its subterranean relatives Tachyoryctes and Eospalax, about which much less is known. Tachyoryctes was found to lack a pseudoglenoid fossa, while Eospalax lacks a periotic lamina and bony cup. This shows that these structures need not simultaneously be present for the detection of ground vibrations in mole‐rats. Based on the observed anatomy, three hypothetical modes of bone conduction are argued to represent more likely mechanisms through which mole‐rats can detect ground vibrations: ossicular inertial bone conduction, a pathway involving sound radiation into the external auditory meatus, and a newly‐described fluid pathway between pseudoglenoid fossa and cranial cavity. The caudolateral extension of the tympanic cavity and the presence of a bony cup might represent synapomorphies uniting Spalax and Tachyoryctes, while the loss of the tensor tympani muscle in Spalax and Eospalax may be convergently derived. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Evolution of the mammalian middle ear.   总被引:7,自引:0,他引:7  
The structure and evolution of the mandible, suspensorium, and stapes of mammal-like reptiles and early mammals are examined in an attempt to determine how, why, and when in phylogeny the precursors of the mammalian tympanic bone, malleus, and incus (postdentary jaw elements and quadrate) came to function in the reception of air-borne sound. The following conclusions are reached: It is possible that at no stage in mammalian phylogeny was there a middle ear similar to that of "typical" living reptiles, with a postquadrate tympanic membrane contracted by an extrastapes. The aquamosal sulcus of cynodonts and other therapsids, usually thought to have housed a long external acoustic meatus, possibly held a depressor mandibulae muscle. In therapsids an air-filled chamber (recessus mandibularis of Westoll) extended deep to the reflected lamina and into the depression (external fossa) on the outer aspect of the angular element. A similar chamber was present in sphenacodontids but pterygoideus musculature occupied the small external fossa. The thin tissues superficial to the recessus mandibularis served as eardrum. Primitively, vibrations reached the stapes mainly via the anterior hyoid cornu, but in dicynodonts, therocephalians, and cynodants vibrations passed mainly or exclusively from mandible to quadrate to stapes and the reflected lamina was a component of the eardrum. In the therapsid phase of mammalian phylogeny, auditory adaptation was an important aspect of jaw evolution. Auditory efficiency, and sensitivity to higher sound frequencies were enhanced by diminution and loosening of the postdentary elements and quadrate, along with transference of musculature from postdentary elements to the dentary. These changes were made possible by associated modifications, including posterior expansion of the dentary. Establishment of a dentary-squamosal articulation permitted continuation of these trends, leading to the definitive mammalian condition, with no major change in auditory mechanism except that in most mammals (not monotremes) the angular, as tympanic, eventually bcame a non-vibrating structure.  相似文献   

3.
The middle ear bones of Mesozoic mammals are rarely preserved as fossils and the morphology of these ossicles in the earliest mammals remains poorly known. Here, we report the stapes and incus of the euharamiyidan Arboroharamiya from the lower Upper Jurassic (~160 Ma) of northern China, which represent the earliest known mammalian middle ear ossicles. Both bones are miniscule in relation to those in non‐mammalian cynodonts. The skull length/stapedial footplate diameter ratio is estimated as 51.74 and the stapes length as the percentage of the skull length is 4%; both numbers fall into the stapes size ranges of mammals. The stapes is “rod‐like” and has a large stapedial foramen. It is unique among mammaliaforms in having a distinct posterior process that is interpreted as for insertion of the stapedius muscle and homologized to the ossified proximal (stapedial) end of the interhyal, on which the stapedius muscle attached. The incus differs from the quadrate of non‐mammalian cynodonts such as morganucodontids in having small size and a slim short process. Along with lack of the postdentary trough and Meckelian groove on the medial surface of the dentary, the ossicles suggest development of the definitive mammalian middle ear (DMME) in Arboroharamiya. Among various higher‐level phylogenetic hypotheses of mammals, the one we preferred places “haramiyidans” within Mammalia. Given this phylogeny, development of the DMME took place once in the allotherian clade containing euharamiyidans and multituberculates, probably independent to those of monotremes and therians. Thus, the DMME has evolved at least three times independently in mammals. Alternative hypothesis that placed “haramiyidans” outside of Mammalia would require independent acquisition of the DMME in multituberculates and euharamiyidans as well as parallel evolution of numerous derived similarities in the dentition, occlusion pattern, mandibles, cranium, and postcranium between the two groups and between “haramiyidans” and other mammals. J. Morphol. 279:441–457, 2018. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The skull of Morganucodon   总被引:3,自引:0,他引:3  
Morganucodon is a triconodont (atherian) mammal from the Lower Jurassic. Two species are described: M. oehleri from China and M. watsoni from Wales. The skull in M. walsoni is 26 mm long; M. oehleri is slightly larger. The dentition is differentiated functionally into incisors, canines, premolars and molars. The pineal foramen is closed. The prefrontals, postfrontals and postorbitals are lost. Septomaxilla, quadratojugal, tabular and pterygoid flanges are retained. The bony external nares are unpaired. The nasal cavity had the mammalian complement of turbinals. The posterior palate has ridges and troughs similar to those in tritylodonts, triconodonts and multituberculates. The alisphenoid ascending process is narrow and is not in contact with the anterior lamina of the petrosal, lying lateral to it. There is a cavum epiptericum, as in late therapsids. The anterior lamina forms the lateral braincase wall, perforated by the foramina pseudovale and pseudorotundum. There is a squamosal-dentary articulation, but the reptilian jaw joint is retained. The ear resembles that in later therapsids, with the tympanum in the lower jaw. The small quadrate was moveable, buttressed medially be a large stapes. Sound conduction from the tympanum was via articular, quadrate and stapes. The systematic position of Morganucodon is discussed.  相似文献   

5.
Amphisbaenians are highly specialized limbless burrowing lizards of controversial relationships. Among fossil lizards, the Eocene (47 Ma) Cryptolacerta is allegedly closest to the amphisbaenian ancestor, but this is put in doubt in this study. Similarities between Cryptolacerta and amphisbaenians, such as limb reduction and expansion of the skull roof, may be a result of parallel evolution. Instead, the Late Cretaceous lizard Slavoia with well‐developed limbs and several plesiomorphic skull characters is proposed to be the oldest known stem amphisbaenian. This is supported by two different phylogenetic analyses and observations on numerous specimens together representing almost the whole skeleton. Among the unique features, that Slavoia shares with amphisbaenians, the most significant are vomers strongly underlapping palatines and pterygoid quadrate ramus tightly wrapping around posteromedial surface of quadrate. The anatomy of Slavoia suggests that the reinforcement of the snout in amphisbaenian evolution preceded the elongation of the postorbital part of the skull, and that of the body, as well as modification of the limbs. Reduction of its hindlimbs was more advanced than that of the forelimbs. The ancient geological age of the central Asiatic Slavoia suggests that diversification of the main North American amphisbaenian groups may have resulted from a faunal dispersals from Asia after the Late Cretaceous.  相似文献   

6.
New fossils of the rare Oligocene mammals Xenocranium and Epoicotherium add information on their skulls and provide the first information on their postcranial skeletons. These epoicotheres, the latest surviving palaeanodonts, have numerous fossorial adaptations and must have been predominantly subterranean. Their skeletal specializations are similar to, and equal or surpass in degree of development, those of most living fossorial mammals. Principal modifications of the skull are the expanded, domed occiput with broad lambdoid crests, hypertrophy of the malleus-incus and related changes in other ear components, reduced eyes, and (in Xenocranium) a flaring, upturned, spatulate snout. The neck was strengthened by synostosis of the 2nd through 5th cervical vertebrae. The forelimb elements have exaggerated crests, processes, and fossae for muscles used in digging or in stabilizing certain joints. The scapula has a high, stout spine with bifid acromion, a “secondary spine,” and an expanded postscapular fossa for attachment of the teres major muscle. The humerus has an elongate pectoral crest, large lesser tuberosity, long entepicondyle, and large hooklike supinator crest. The enormous incurved olecranon process of the ulna provided insertion for the massive triceps and origin for the carpal and digital flexors, and the latter gained mechanical advantage by incorporating in its tendon a large carpal sesamoid. In the greatly shortened hand, digit three is largest, with its metacarpal and proximal phalanx fused and its claw-bearing ungual-phalanx very large. These traits indicate that Xenocranium and Epoicotherium were among the most specialized “rapid-scratch” diggers ever to evolve. Their remarkable convergence to chrysochlorids reflects a similar mode of digging, with extensive use of the snout for loosening and lifting soil when making shallow foraging burrows. For deeper burrowing, the forelimbs probably loosened the soil while the rear limbs moved it behind. Like many extant subterranean mammals, Xenocranium and Epoicotherium were essentially sightless, but they were specialized for low frequency sound reception. Their extinction may have been due to a combination of environmental change and competition with other fossorial animals, such as proscalopine insectivores and rhineurid amphisbaenians.  相似文献   

7.
8.
Shunosaurus, from the Middle Jurassic of China, is probably the best‐known basal sauropod and is represented by several complete skeletons. It is unique among sauropods in having a small, bony club at the end of its tail. New skull material provides critical information about its anatomy, brain morphology, tooth replacement pattern, feeding habits and phylogenetic relationships. The skull is akinetic and monimostylic. The brain is relatively small, narrow and primitively designed. The tooth replacement pattern exhibits back to front replacement waves in alternating tooth position. The teeth are spatulate, stout and show well‐developed wear facets indicative of coarser plant food. Upper and lower tooth rows interdigitate and shear past each other. Tooth morphology, skull architecture, and neck posture indicate that Shunosaurus was adapted to ground feeding or low browsing. Shunosaurus exhibits the following cranial autapomorphies: emargination of the ventral margin of the jugal/quadratojugal bar behind the tooth row; postorbital contains a lateral pit; vomers do not participate in the formation of the choanae; pterygoid is extremely slender and small with a dorsal fossa; quadrate ramus of the pterygoid is forked; quadratojugal participates in the jaw articulation; tooth morphology is a combination of cylindrical and spatulate form; basipterygoid process is not wrapped by the caudal process of the pterygoid; trochlear nerve has two exits; occlusal level of the maxillary tooth row is convex downward, whereas that of the dentary is concave upward, acting like a pair of garden shears; dentary tooth count is 25 or more; and the replacing teeth invade the labial side of the functional teeth. Cranial characters among the basal sauropods are reviewed. As Shunosaurus is the earliest sauropod for which cranial remains are known, it occupies an important position phylogenetically, showing the modification of skull morphology from the prosauropod condition. Although the skull synapomorphies of Sauropoda are unknown at present, 27 cranial synapomorphies are known for the clade Eusauropoda. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society, 2002, 136 , 145?169.  相似文献   

9.
Hyobranchium, postcranial skeleton, and developmental events during ontogeny of the temnospondylOnchiodon labyrinthicus from the Dohlen Basin (Autunian, Saxony) are described. At a skull length of approximately 20 mm, the scapulocoracoid appeared, but ossified very slowly. The ischium ossified distinctly later than the stout ilium and later than the scapulocoracoid. The stapes can be determined in specimens beyond 26 mm skull length, and the exoccipitals started to ossify probably at 40 mm, followed by the quadrate. Vertebral centra ossified in early juveniles at approximately 50 mm skull length. The larval hyobranchium with ossified basibranchial and ceratobranchials indicates strong suction feeding. The bony ceratobranchials were resorbed after the larval period. The poorly ossified postcranium suggests that juveniles lived semiterrestrially.  相似文献   

10.
The Lower Permian temnospondyl Edops craigi exemplifies an early and plesiomorphic condition of the single ear ossicle or stapes among the temnospondyls, the probable stem group of lissamphibians. In Edops, the 11-cm-long bone is more massive than in other temnospondyls, has a distinct neck, a dorsal crest and incompletely subdivided footplate and ventral process. Despite a range of invariances, temnospondyl stapes were much more diverse than previously conceived. A survey of described stapes gives insight into character evolution of the ear ossicle in the lissamphibian stem group. These include alternative patterns of paedomorphosis, proportional size change, morphology of tympanic region and reorientation of the auditory apparatus.  相似文献   

11.
Bone conduction (BC) sound is the perception of sound transmitted in the skull bones and surrounding tissues. To better understand BC sound perception and the interaction with surrounding tissues, the power transmission of BC sound is investigated in a three-dimensional finite-element model of a whole human head. BC sound transmission was simulated in the FE model and the power dissipation as well as the power flow following a mechanical vibration at the mastoid process behind the ear was analyzed. The results of the simulations show that the skull bone (comprises the cortical bone and diploë) has the highest BC power flow and thereby provide most power transmission for BC sound. The soft tissues was the second most important media for BC sound power transmission, while the least BC power transmission is through the brain and the surrounding cerebrospinal fluid (CSF) inside the cranial vault. The vibrations transmitted in the skull are mainly concentrated at the skull base when the stimulation is at the mastoid. Other vibration transmission pathways of importance are located at the occipital bone at the posterior side of the head while the transmission of sound power through the face, forehead and vertex is minor. The power flow between the skull bone and skull interior indicate that some BC power is transmitted to and from the skull interior but the transmission of sound power through the brain seem to be minimal and only local to the brain–bone interface.  相似文献   

12.
Extant crocodylians have a limited taxonomic and ecological diversity but they belong to a lineage (Crocodylomorpha) that includes basal and rather generalized species and a highly diverse clade, Crocodyliformes. The latter was among the most successful groups of Mesozoic tetrapods, both in terms of taxonomic and ecological diversity. Crocodyliforms thrived in terrestrial, semiaquatic, and marine environments, and their fossil diversity includes carnivorous, piscivorous, insectivorous, and herbivorous species. This remarkable ecological and trophic diversity is thought only to occur in forms with a completely akinetic skull, characterized by a functionally integrated and tightly sutured braincase‐quadrate‐palate complex. However, the patterns of evolutionary change that led to the highly modified skull of crocodyliforms and that likely enabled their diversification remain poorly understood. Herein, a new basal crocodylomorph from the Late Jurassic of Patagonia is described, Almadasuchus figarii gen. et sp. nov. The new taxon is known from a well‐preserved posterior region of the skull as well as other craniomandibular and postcranial remains. Almadasuchus figarii differs from all other crocodylomorphs in the presence of six autapomorphic features, including the presence of a large lateral notch on the upper temporal bar, an otic shelf of the squamosal that is wider than long, a deep subtriangular concavity on the posterolateral surface of the squamosal, and an elongated pneumatopore on the ventral surface of the quadrate. Phylogenetic analysis focused on the origin of Crocodyliformes places Almadasuchus as the sister group of Crocodyliformes, supported by synapomorphic features of the skull (e.g. subtriangular basisphenoid, absence of basipterygoid process, absence of a sagittal ridge on the frontal, and a flat anterior skull roof with an ornamented dorsal surface). New braincase information provided by Almadasuchus and other crocodylomorphs indicates that most of the modifications on the posterior region of the skull of crocodyliforms, including the strongly sutured braincase, quadrate, and the extensive secondary palate appeared in a stepwise manner, and pre‐dated the evolutionary changes in the snout, jaws, and dentition. This indicates that the progressively increased rigidity of the skull provided the structural framework that allowed the great ecological diversification of crocodyliforms during the course of the Mesozoic. The phylogenetic pattern of character acquisition inferred for the strongly sutured (akinetic) skull and the appearance of more diverse feeding behaviours that create high mechanical loads on the skull provides another interesting parallel between the evolution of Mesozoic crocodyliforms and the evolutionary origins of mammals.  相似文献   

13.
Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale’s head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.  相似文献   

14.
The densities of middle ear ossicles of golden moles (family Chrysochloridae, order Afrosoricida) were measured using the buoyancy method. The internal structure of the malleus was examined by high-resolution computed tomography, and solid-state NMR was used to determine relative phosphorus content. The malleus density of the desert golden mole Eremitalpa granti (2.44 g/cm3) was found to be higher than that reported in the literature for any other terrestrial mammal, whereas the ossicles of other golden mole species are not unusually dense. The increased density in Eremitalpa mallei is apparently related both to a relative paucity of internal vascularization and to a high level of mineralization. This high density is expected to augment inertial bone conduction, used for the detection of seismic vibrations, while limiting the skull modifications needed to accommodate the disproportionately large malleus. The mallei of the two subspecies of E. granti, E. g. granti and E. g. namibensis, were found to differ considerably from one another in both size and shape.  相似文献   

15.
The cranial and hyobranchial muscles of the Triassic temnospondyl Gerrothorax have been reconstructed based on direct evidence (spatial limitations, ossified muscle insertion sites on skull, mandible, and hyobranchium) and on phylogenetic reasoning (with extant basal actinopterygians and caudates as bracketing taxa). The skeletal and soft‐anatomical data allow the reconstruction of the feeding strike of this bottom‐dwelling, aquatic temnospondyl. The orientation of the muscle scars on the postglenoid area of the mandible indicates that the depressor mandibulae was indeed used for lowering the mandible and not to raise the skull as supposed previously and implies that the skull including the mandible must have been lifted off the ground during prey capture. It can thus be assumed that Gerrothorax raised the head toward the prey with the jaws still closed. Analogous to the bracketing taxa, subsequent mouth opening was caused by action of the strong epaxial muscles (further elevation of the head) and the depressor mandibulae and rectus cervicis (lowering of the mandible). During mouth opening, the action of the rectus cervicis muscle also rotated the hyobranchial apparatus ventrally and caudally, thus expanding the buccal cavity and causing the inflow of water with the prey through the mouth opening. The strongly developed depressor mandibulae and rectus cervicis, and the well ossified, large quadrate‐articular joint suggest that this action occurred rapidly and that powerful suction was generated. Also, the jaw adductors were well developed and enabled a rapid mouth closure. In contrast to extant caudate larvae and most extant actinopterygians (teleosts), no cranial kinesis was possible in the Gerrothorax skull, and therefore suction feeding was not as elaborate as in these extant forms. This reconstruction may guide future studies of feeding in extinct aquatic tetrapods with ossified hyobranchial apparatus. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
本文介绍了以短吻云南兽为代表的一种耳区结构.它表明在三列齿类爬行动物里已经出现有发育的耳蜗壳以及在其内侧通过的颈内动脉等进步性质,听腔亦趋封闭.云南兽的中耳腔外侧出现了一条曲折的骨质外耳道,侧枕骨突外侧明显的沟可能表明方骨后耳膜之存在.  相似文献   

17.
Olivier  Rieppel 《Journal of Zoology》1978,186(2):185-208
Based on skull structure, the genus Gongylophis Wagler is again placed in synonomy with the genus Eryx Daudin. Lichanura is considered to be structurally close to the early erycine stock from which Charina evolved as an early, separate off-shoot.
Skull characters which adapt erycines to burrowing habits show clinal variation: they involve shortening of the skull and streamlining of its contours through snout depression, the development of a spatulate transverse process of the pre-maxilla reinforced by the nasals and a specialization of the naso-frontal joint which supports the snout. The jaws retain their mobility. Burrowing habits are a specialized feature of the Erycinae.  相似文献   

18.
A skull and mandible of a crocodylian from the late Lutetian of Issel, previously described as ‘Atacisaurus glareae’ is reconsidered. The holotype of ‘A. glareae’, a partial mandible, is lost, and the skull cannot be designated as a lectotype for the species. ‘Atacisaurus glareae’ is thus a nomen dubium. The skull bears a combination of characters, allowing us to assign it to the genus Kentisuchus. It differs from the, until now, only known species Kentisuchus spenceri from the Ypresian of England, in having a more robust snout, with the constriction of the snout at the level of the seventh–eighth teeth being 80% of the largest maxillary width, and not bearing anteroposterior shallow fossae along the lacrimomaxillary sutures. A new species is thus erected, K entisuchus astrei sp. nov. Phylogenetic analysis confirms that the genus Kentisuchus is one of the most primitive tomistomine. The phylogenetic and palaeogeographic distribution suggests that Kentisuchus was isolated in the Atlantic Ocean, and Ebro (Spain) and Aquitaine (France) basins, during the Ypresian, and that the south Pyrenean marine corridor between the Atlantic Ocean and the Tethys could have closed during the early Ypresian, earlier than previously supposed. This could be correlated with the first mammal migrations from the Iberian Peninsula to Southern France. The palaeogeographic distribution of early and middle Eocene tomistomines also suggests the possible presence of a marine corridor between the North Sea and the Central Tethys through the Polish Lowlands Basin during the early Lutetian. This marine corridor could be informative for studies on mammal migration, as the presence of a north–south marine corridor necessarily means there is an absence or less efficient east–west terrestrial passage. This could have consequences on the history of Asian–European mammal migrations.  相似文献   

19.
Abstract Population density cycles influence phenotypic evolution through both density‐dependent selection during periods of high density and through enhanced genetic drift during periods of low density. We investigated the response of different phenotypic traits to the same density cycles in a population of the yellow‐necked mouse, Apodemus flavicollis, from Bia?owieza National Park in Poland. We examined nonmetric skull traits, skull and mandible size, skull and mandible shape, and transferrin allele frequencies. We found that all of the traits changed significantly over the seven‐year study period. The greatest changes in nonmetric traits and mandible size occurred during periods of increasing density, and the magnitude of changes in skull and mandible shape was correlated with the magnitude of density changes. Frequencies of transferrin alleles changed the most when population density was in decline. Changes among the five phenotypic traits were generally uncorrelated with one another, except for skull and mandible shape. Nonmetric traits were selectively neutral when assessed with QST/FST analysis, whereas mandible size, mandible shape, and skull shape showed evidence of fairly strong selection. Selection on skull size was weak or nonexistent. We discuss how different assumptions about the genetic components of variance affect QST estimates when phenotypic variances are substituted for genetic ones. We also found that change in mandible size, mandible shape, skull size, and skull shape were greater than expected under a neutral model given reasonable assumptions about heritability and effective population size.  相似文献   

20.
Dendrerpeton acadianum from the Westphalian A (Upper Carboniferous) of Joggins, Nova Scotia, is a phylogenetically and chronologically early temnospondyl. Its external cranial anatomy has been used previously to suggest the presence of a tympanic membrane, and thus of an ear adapted to the perception of airborne sound. However, supporting evidence provided by stapedial and braincase morphology has so far been lacking. The braincase and middle ear region have remained almost wholly unknown. CT scanning and 3-D computer reconstruction of BMNH R.436 have been used to shed light on these important areas. Both stapes prove to be present in the specimen; the right stapes is distorted, but the left stapes lies inside the cranial cavity and is perfectly preserved. The latter resembles the stapes of the relatively few other temnospondyls in which the bone has been described and is most similar to that of Doleserpeton . The morphology and orientation of the stapes provide strong evidence for the presence of an ear adapted to the perception of airborne sound, with similarities to the extant anuran condition. The reconstructed braincase shows a high degree of similarity to that of other adequately known temnospondyls. This gives supporting evidence that D. acadianum is correctly placed in the temnospondyl phylogeny and thus demonstrates one of the earliest hearing systems adapted to the perception of airborne sound that can be homologized with the extant anuran condition.  © 2005 The Trustees of the Natural History Museum, Zoological Journal of the Linnean Society , 2005, 143 , 577−597.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号