首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

2.
In order to gain morphological insights about the cell density dependency, hepatocytes cultured at a low cell density (less than about 0.1 X 10(5) nuclei (cm2)-1) and at a high cell density (greater than about 1 X 10(5) nuclei (cm2)-1) were examined ultrastructurally 24 h after plating (just prior to the beginning of DNA synthesis). The results were as follows: (i) glycogen rosettes disappeared completely in low density culture as compared with sections from an intact liver. In contrast, glycogen rosettes were still present in high density culture. (ii) Polysomes seemed increased in low density culture in comparison with those seen in sections from an intact liver and from the high density culture. (iii) In low density culture, the shape of mitochondria deviated from that of hepatocytes in an intact liver and the mitochondria often lost a characteristic close contact with rough endoplasmic reticulum (rough ER). (iv) In low density culture, bundles of filamentous structure were detected, which were not found in an intact liver or high density culture. The following features were found only in high density culture; (v) numerous villous cytoplasmic protrusions developed along the area facing adjacent cells, and seemed to intertwine with each other, and (vi) between the hepatocytes, only abortive junctions were found. These results indicate that the hepatocytes cultured at a low density express most of the characteristics of the hepatocytes in a regenerating liver and the features of the cells cultured at a high density are very similar to those of the hepatocytes in sections from an intact liver.  相似文献   

3.
Glucagon and dibutyryl cyclic AMP exerted both stimulatory and inhibitory effects on hepatocyte DNA synthesis when added to primary monolayer cultures in the presence of serum, dexamethasone, insulin and epidermal growth factor. The stimulation occurred at low concentrations of glucagon (1 pM-1 nM) or dibutyryl cyclic AMP (1 nM-1 microM), while the agents inhibited DNA synthesis at higher concentrations (usually glucagon at over 10 nM or dibutyryl cyclic AMP at over 10 microM). The stimulatory effect was stronger at low cell densities (less than 20 X 10(3) hepatocytes/cm2). When the hepatocytes were cultured at higher densities, stimulatory effects were reduced or absent and the inhibition of (hormone-induced) DNA synthesis by a high concentration of glucagon was much more pronounced than at low cell densities. These results indicate dual, bidirectional, effects of cyclic AMP on hepatocyte DNA synthesis.  相似文献   

4.
The activities to activate and detoxify procarcinogens were compared in intact hepatocytes from humans, Sprague-Dawley rats and Syrian golden hamsters. Mutagenic metabolites that were released from the isolated hepatocytes were detected by mutation induction in co-cultivated Salmonella typhimurium TA98. Hepatocytes from the 3 animal species all activated aflatoxin B1 (AFB1), acetylaminofluorene (AAF) and aminofluorene (AF) and released active metabolites to induce mutation in the indicator S. typhimurium T98. Hamster hepatocytes were more effective than were human and rat hepatocytes to mediate mutation of Salmonella TA98 by AFB1, AAF and AF. Hepatocytes of human and rat failed to mediate mutation by 1-aminopyrene (1-AP). Indeed, at low concentration of 1-AP and 1-nitropyrene (1-NP), the presence of the hepatocytes decreased the number of TA98 revertants. Only at higher concentrations of 1-aminopyrene and 1-nitropyrene did hamster hepatocytes increase mutation frequencies of indicator cells over the control groups. It seems that hepatocytes, particularly human hepatocytes, are better able to absorb and detoxify 1-AP and 1-NP than to activate them.  相似文献   

5.
Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [125I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density.  相似文献   

6.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) is known as a dietary carcinogen and it requires metabolic activation by cytochrome P450 (CYP) 1A subfamily to have carcinogenicity. On the other hand, our previous report demonstrated that Trp-P-1 induces apoptosis in primary cultured rat hepatocytes, but the metabolically activated Trp-P-1 added extracelluarly to hepatocytes did not induce apoptosis. In this study, we focused on the intracellular status of CYPs and investigated apoptotic events induced by Trp-P-1 using hepatocytes isolated from rats treated with three chemical inducers for CYPs. In cultured hepatocytes from rats treated with 3-methylchoranthrene, which mainly induces CYP 1A, Trp-P-1-induced apoptosis was suppressed. In the same cultures, intact Trp-P-1 was decreased and its metabolites were increased. Phenobarbital and pyridine did not affect Trp-P-1-induced apoptosis. These results suggested that evoking CYP 1A activity might interfere with apoptosis induced by Trp-P-1 in rat hepatocytes under the ex vivo system.  相似文献   

7.
Summary The rates of spontaneous cell detachment, cell viability, and apoptosis in primary cultures of rat hepatocytes plated at high and low density were compared. Apoptosis was frequent in detached cells, and the rates of cell detachment and apoptosis were greater in high-density than in low-density cultures. Among attached cells, more cells had condensed or fragmented nuclei in high-density than in low-density cultures. Further, ladder-like DNA fragmentation was not seen in low-cell-density cultures but was clearly evident in high-density cultures. Bax was more highly expressed in cells cultured at high density, and on collagen vs. matrigel, whereas changes of Bcl-2 and Fas expression observed in culture appeared unrelated to the rate of apoptosis. The rate of hepatocyte apoptosis appeared to be identical in low-density cultures on collagen 1 and matrigel, but when cells were cultured at high density, matrigel suppressed apoptosis by more than 50% at 36 h. In hepatocytes cultured on collagen 1, dexamethasone (0.1 μM) suppressed apoptosis in both low- and high-density cultures; higher doses had no further effects. In high density cultures, aurintricarboxylic acid (10 μM) suppressed apoptosis and this improved cell attachment at 48 h. It is concluded that cell viability in primary cultures of rat hepatocytes grown on collagen I is dependent on optimal culture density and that the cell population is regulated, at least in part, by apoptosis. Corticosteroids suppress spontaneous apoptosis of cultured hepatocytes in a non-dose-dependent manner, whereas matrigel abolishes apoptosis induced by increasing cell density. Bax may be an important protein in the cell density and cell matrix-dependent regulation of apoptosis in cultured hepatocytes.  相似文献   

8.
Aflatoxin B1 permeates isolated rat hepatocytes by non-ionic diffusion. Its uptake is neither saturable nor influenced by metabolic energy and not inhibited by treatment of cells with proteases. The initial rate of aflatoxin B1 uptake measured at 7 degrees C is between 40 and 50% compared to that at 37 degrees C. However, after an incubation period of 7 minutes identical equilibrium uptake is reached at both temperatures. The apparent activation energies, calculated for aflatoxin B1 uptake by Arrhenius diagrams ranged between 1.69 and 4.5 kcal/mol. A Q10 value of 1.34 was calculated for a temperature interval of 7-17 degrees C but decreased to 1.05 for the interval of 27-37 degrees C. Liposomes or lipoproteins added to the cell suspension inhibited the aflatoxin B1 uptake into hepatocytes. Liposomes mainly composed of unsaturated fatty acids bind twice as much aflatoxin B1 as those composed of saturated ones, indicating that the lipophilicity of the mycotoxin is crucial in the determination of its uptake into liver cells. At concentrations above 5 micrograms/ml, aflatoxin B1 inhibited the carrier-mediated uptake of cholic acid and of phalloidin into hepatocytes. This effect was reversible and abolished by washing the cells after preincubation with aflatoxin. In concentrations below 5 micrograms/ml the uptake of phallotoxin and cholic acid was however stimulated by 15-25%. These results indicate, that a carrier-mediated uptake into hepatocytes via the multispecific bile salt transporter is not responsible for the organoselective clearance of aflatoxins by the liver. On the other hand, the cholestatic effect of aflatoxin B1 results at least partially from the inhibition of the multispecific bile acid transport system. This inhibition may arise from affinity of aflatoxins to lipid domains of the cell membrane.  相似文献   

9.
B16 melanoma F10 (B16-F10) cells with high glutathione (GSH) content show high metastatic activity in vivo. An intertissue flow of GSH, where the liver is the main reservoir, can increase GSH content in metastatic cells and promote their growth. We have studied here possible tumor-derived molecular signals that could activate GSH release from hepatocytes. GSH efflux increases in hepatocytes isolated from mice bearing liver or lung metastases, thus suggesting a systemic mechanism. Fractionation of serum-free conditioned medium from cultured B16-F10 cells and monoclonal antibody-induced neutralization techniques facilitated identification of interleukin (IL)-6 as a tumor-derived molecule promoting GSH efflux in hepatocytes. IL-6 activates GSH release through a methionine-sensitive/organic anion transporter polypeptide 1- and multidrug resistance protein 1-independent channel located on the sinusoidal site of hepatocytes. Specific siRNAs were used to knock down key factors in the main signaling pathways activated by IL-6, which revealed a STAT3-dependent mechanism. Our results show that IL-6 (mainly of tumor origin in B16-F10-bearing mice) may facilitate GSH release from hepatocytes and its interorgan transport to metastatic growing foci.  相似文献   

10.
Removal of aflatoxin B(1) from liquid cultures by resting and growing cells of Flavobacterium aurantiacum NRRL B-184 was studied. Spectrophotometic and thin-layer techniques served as aflatoxin assays. Cells grown in the presence of 5 ppm or higher levels of aflatoxin developed aberrant morphological forms. These toxin concentrations partially inhibited growth, and the nature of the inhibition suggested that aflatoxin interfered with cell wall synthesis. Incubation of 1.0 x 10(11) resting cells per milliliter with 7.0 mug/ml of aflatoxin B(1) during a 4-hr period facilitated complete toxin removal from a buffered aqueous medium. Autoclaved cells and cell wall preparations could remove a fraction of the aflatoxin of a test system. However, the toxin removed by autoclaved cells and cell walls could be extracted by washing with water but the aflatoxin B(1) removed by intact cells could not be extracted into the liquid phase. The uptake of aflatoxin B(1) by resting cells was sensitive to temperature and pH. Ruptured preparations of F. aurantiacum were not able to remove or modify the aflatoxin in an aqueous solution.  相似文献   

11.
12.
The phenobarbital induced shift from G0 to G1 cell cycle phases was analyzed in freshly isolated cultured rat hepatocytes by image analysis. Nuclei in situ in monolayers or in an isolated state were stained with quinacrine dihydrochloride. Fluorescence intensity and fluorescence area were recorded in controls and after treatment with phenobarbital (1.5 or 3 mM, 48 h). Reproducible measurements were obtained with the aid of an elaborate background correction and image enhancement procedure and by the construction of individual measuring masks for each nucleus. A complete statistical analysis revealed that in both preparations (isolated nuclei and monolayer cultures, treated and untreated), individual ploidy classes were distinguishable by fluorescence area measurements. Within each ploidy class, the area is modified by the cell density: with increasing cell density the area occupied by a single cell decreases. After phenobarbital treatment, a decrease in size, due to the higher cell density after the mitotic stimulus of the test compound and a decrease in total fluorescence, due to the G0-G1 cell cycle phase shift was recorded. In monolayer cultures, but not in isolated nuclei, two populations of nuclei were discernible suggesting two cell populations, one responding to treatment and one refractive.  相似文献   

13.
Prostaglandin E1 (PGE1) was bound to primary cultured rat hepatocytes in a receptor-dependent manner in serum-free medium at 4 degrees C. When added at a concentration of 2 X 10(-9) M, maximal specific binding occurred within 60-90 min. Trypsin treatment of the cells reduced the binding capacity to about 50% of that of untreated cells. Scatchard-analysis of the binding data showed that the cells had an apparent dissociation constant of 1.2 X 10(-8) M and a binding capacity of 580 fmol (approximately 3.5 X 10(11) PGE1 receptors)/mg of protein. In experiments at 37 degrees C, maximal specific binding occurred within 5 min and was 6-7 times that at 4 degrees C, but the amount of bound PGE1 decreased rapidly after 5 min due to metabolism of PGE1 in the hepatocytes. Thin-layer chromatographic analysis showed that the material bound to the cell surface consisted of intact PGE1 and its metabolites at 37 degrees C, but PGE1 only at 4 degrees C.  相似文献   

14.
A fixed-bed bioreactor with a polyurethane membrane (PUM) as a cell-supporting material was developed for high-density culture of rat hepatocytes. The PUM has a heterogeneous porous structure of micropores (pore size <100 microm) and macropores (pore size >100 microm) with a porosity of 90%. One important feature of a PUM is that the macropores have finger-like structures and their diameters gradually decrease from the upper to the lower layer of the PUM. Most rat hepatocytes were readily immobilized in the micropores of PUM. Immobilized cell densities of 1-3 x 10(7) cells/cm(3) PUM were achieved within 5 min by natural downflow of cell suspension and their immobilization efficiencies were more than 99%. Using a syringe pump, a cell density of 5 x 10(7) cells/cm(3) PUM was achieved with more than 96% immobilization efficiency. Perfusion cultures using this reactor were performed for 7 days without cell leakage. The optimal cell density for albumin secretion was between 2 x 10(7) and 3 x 10(7) cells/cm(3) PUM. Albumin secretion in the perfusion culture was maintained for a relatively long period of time when compared to that in the monolayer culture. The rate of albumin secretion in the perfusion culture was about 50% of that in monolayer culture. Hepatocytes immobilized in PUM were slightly aggregated, but they maintained spherical form individually even after 7 days of cultivation. The above results show that PUM is a promising cell-supporting material for efficient immobilization of high cell density of hepatocytes.  相似文献   

15.
Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin less than 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels less than 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a "two-site" binding model [L.S. Rosenberg, M.J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002-1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1-0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes (less than or equal to 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15-25% decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1-guanine N7 DNA adducts.  相似文献   

16.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

17.
Adult rat hepatocytes were cultured for 15 days on type I collagen-coated permeable membranes in a hormonally defined Waxman's modified medium supplemented with very low concentrations of insulin, glucagon and dexamethasone. Phase contrast examination showed that 15-day-old cultures still formed a regular monolayer of polygonal cells. In similarly aged cultures, intracellular glycogen was abundant and evenly distributed, while steatosis remained very limited. Scanning and transmission electron microscopy showed that well developed bile canaliculi could be observed on the lateral side of the hepatocyte membrane after 4 days of incubation and persisted for 2 weeks. These canalicular structures probably originated from coalescence of membrane invaginations observed in 1-day-old cultures. Transmission electron microscopy showed that the ultrastructure of the cells was very close to that of normal rat hepatocytes in the intact liver. These results suggest that rat hepatocytes cultured under these experimental conditions are able to develop and maintain tissue-specific cytochemical and morphological properties for at least 15 days.  相似文献   

18.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

19.
An improved non-perfusion method for the preparation of cultured foetal-rat hepatocytes is described. Digestion of the liver with collagenase and deoxyribonuclease I gave yields of 40 X 10(6) hepatocytes/g of liver. The plating efficiency of hepatocytes in medium with 10 microM-cortisol was 50%. Cell morphology and metabolism were maintained through 3 days of monolayer culture, with minimal contamination by haematopoietic cells or fibroblasts. The cultured cells bound and degraded 125I-insulin in a time- and dose-dependent manner. The estimated ED50 for competitive binding at 37 degrees C was 1.1 nM. Curvilinear Scatchard plots were observed, with estimates of 16 500 high-affinity sites (Kd = 813 pM) and 53 000 low-affinity sites (Kd = 23 nM) per cell. The cultured cells demonstrated a glycogenic response to insulin, with an estimated ED50 of 120 pM. The degree of glycogenic response to insulin varied with time in culture: 500% above basal on day 1, 200% on day 2, and only 150% on day 3. Cultured foetal cells also exhibited a time-dependent uptake of 2-aminoisobutyric acid, which, in contrast with previous reports with adult cells, was not stimulated by the presence of 10 nM-insulin. Cultured foetal hepatocytes may provide an interesting model with which to study the relationship between insulin-receptor binding and insulin action.  相似文献   

20.
As part of our attempt to develop a hybrid artificial liver support system using cultured hepatocytes, we investigated the long-term metabolic function of hepatocytes incubated in a packed-bed type reactor using reticulated polyvinyl formal (PVF) resin as a supporting material. Long-term (up to 1 week) perfusion culture experiments using the packed-bed reactor (20 mm i.d.) loaded with 500 PVF resin cubes (mean pore size 250 mum, 2 x 2 x 2 mm), together with conventional monolayer culture experiments as controls, were performed in serum-free or serum-containing medium. Ammonium metabolism and urea synthesis activities were evaluated quantitatively based on reaction kinetic analyses. Initial rates of ammonium metabolism and urea-N synthesis, as well as GPT enzyme activities, were adopted as indexes of the metabolic performance of the reactor and activities of the cultured hepatocytes.When serum-free medium was used in the perfusion cultures, ammonium metabolic and urea-N synthetic rates showed significant decay with elapse of the culture period, being less than 10% of those measured on day 1. This loss of activity was more prominent in the perfusion culture than in the monolayer cultures using this medium. In contrast, when serum-containing medium was used, approximately 50% of these activities obtained on day 1 were maintained even at the end of the cultures both in the perfusion and monolayer culture experiments.We concluded that the packed-bed reactor using PVF resin enabled high-density culture of hepatocytes, and showed a satisfactory ability to maintain the metabolic function of immobilized hepatocytes for relatively long periods of up to 1 week. This type of reactor is thus considered to represent a breakthrough in overcoming the difficulties involved in the development of a hybridtype artificial liver support system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号