首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The antigenicity of three chimeric synthetic peptides (Qm, Qm-16, and Qm-17) incorporating an immunodominant epitope of the gp41 transmembrane protein (587-617) and the different epitopes of the gp120 envelope protein (495-516), (301-335), (502-516) of human immunodeficiency virus (HIV-1), separated by two glycine residues, was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels of anti-HIV-1 positive sera (n = 47). The specificity was evaluated with samples from healthy blood donors (n = 20) and anti-HIV-2 positive samples (n = 10). The results indicate that the chimeric peptide, Qm, was the most reactive one because it detected antibodies to virus efficiently. This may be related to peptide adsorption onto the solid surface, the C-terminal region of HIV-1 gp120 (495-516) combined with gp41 (587-617) in the chimera, and the epitope accessibility to the antibodies. This study showed the usefulness of the chimeric peptides as antigen to detect antibodies to HIV-1 virus.  相似文献   

2.
Two chimeric synthetic peptides incorporating immunodominant sequences from HTLV-I virus were synthesized. Monomeric peptides P7 and P8 represent sequences from transmembrane protein (gp21) and envelope protein (gp46) of the virus. The peptide P7 is a gp21 (374-400) sequence and the peptide P8 is a gp46 (190-207) sequence. Those peptides were arranged in a way that permits one to obtain different combinations of chimeric peptides (P7-GG-P8 and P8-GG-P7), separated by two glycine residues as spacer arms. The antigenic activity of these peptides were evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels of anti-HTLV-I-positive sera (n = 22), anti-HTLV-I/II-positive sera (n = 2), HTLV-positive (untypeable) serum samples (n = 2), and anti-HTLV-II-positive sera (n = 11), while specificity was evaluated with anti-HIV-positive samples (n = 19) and samples from healthy blood donors (n = 30). The efficacy of the chimeric peptides in solid-phase immunoassays was compared with the monomeric peptides and monomeric peptides together. The chimeric peptide P7-GG-P8 proved to be the most reactive with anti-HTLV-I-positive sera. These results may be related to a higher peptide adsorption capacity to the solid surface and for epitope accessibility to the antibodies. This chimeric peptide would be very useful for HTLV-I diagnostics.  相似文献   

3.
Two chimeric synthetic peptides incorporating immunodominant sequences from HTLV-II virus were synthesized. Monomeric peptides P2 and P3 represent sequences from transmembrane protein (gp21) and envelope protein (gp46) of the virus. The peptide P2 is a gp21 (370-396) sequence and the peptide P3 is a gp46 (178-205) sequence. Those peptides were arranged in a way that permits one to obtain different combinations of chimeric peptides (P2-GG-P3 and P3-GG-P2), separated by two glycine residues as spacer arms. The antigenic activity of these peptides was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels anti-HTLV-II-positive sera (n = 11), anti-HTLV-I/II-positive sera (n = 2), HTLV-positive (untypeable) serum samples (n = 2), and anti-HTLV-I-positive sera (n = 22), while specificity was evaluated with anti-HIV-positive samples (n = 19) and samples from healthy blood donors (n = 30). The efficacy of the chimeric peptides in solid-phase immunoassays was compared with the monomeric peptides and a mixture of the monomeric peptides. Higher sensitivity was observed for chimeric peptide Q5 assay. Those results may be related to a higher peptide adsorption capacity to the solid surface and for epitope accessibility to the antibodies. This chimeric peptide would be very useful for HTLV-II diagnostic.  相似文献   

4.
The present study evaluated four chimeric synthetic peptides incorporating immunodominant sequences from HTLV-1 virus. Monomeric peptides M1, M2, and M3 represent sequences from core (p19) and envelope (gp46) of the virus. The peptide M1 is a p19 (105-124) sequence, the peptide M2 is a gp46 (190-207) sequence, and the peptide M3 is a gp 46 sequence with substitution of proline at position 192 by serine. Those peptides were arranged in such a way that permits one to obtain different combinations of chimeric peptides (M1-M2, M2-M1, M1-M3, and M3-M1). Two glycine residues were used as arm spacers for separating the two sequences. The antigenicity of these peptides was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of human T cell leukemia virus type I (HTLV-I)-infected individuals (n = 24), while specificity was evaluated with anti-HTLV-II-positive samples (n = 11) and healthy blood donors (n = 25). The results were compared to plates coated with monomeric peptides M1, M2, and M3. The chimeric peptide orientation (M1-M2) and the proline at position 192 of the gp46 peptide showed higher sensitivity.  相似文献   

5.
疫苗一直被视为终结人类免疫缺陷病毒1型和2型(human immunodeficiency virus type 1/2,HIV-1/2)最有力的武器.位于HIV-1 gp41胞外域C末端的近膜端外部区域(membrane-proximal external region,MPER)是一个重要的抗原位点,但糖蛋白41(...  相似文献   

6.
The humoral immune response to human immunodeficiency virus type 1 (HIV-1) is often studied by using monomeric or denatured envelope proteins (Env). However, native HIV-1 Env complexes that maintain quaternary structure elicit immune responses that are qualitatively distinct from those seen with monomeric or denatured Env. To more accurately assess the levels and types of antibodies elicited by HIV-1 infection, we developed an antigen capture enzyme-linked immunosorbent assay using a soluble, oligomeric form of HIV-1IIIB Env (gp140) that contains gp120 and the gp41 ectodomain. The gp140, captured by various monoclonal antibodies (MAbs), retained its native oligomeric structure: it bound CD4 and was recognized by MAbs to conformational epitopes in gp120 and gp41, including oligomer-specific epitopes in gp41. We compared the reactivities of clade B and clade E serum samples to captured Env preparations and found that while both reacted equally well with oligomeric gp140, clade B seras reacted more strongly with monomeric gp120 than did clade E samples. However, these differences were minimized when gp120 was captured by a V3 loop MAb, which may lead to increased exposure of the CD4 binding site. We also measured the ability of serum samples to block binding of MAbs to epitopes in gp120 and gp41. Clade B serum samples consistently blocked binding of oligomer-dependent MAbs to gp41 and, to a slightly lesser extent, MAbs to the CD4 binding site in gp120. Clade E serum samples showed equivalent or greater blocking of oligomer-dependent gp41 antibodies and considerably less blocking of CD4-binding-site MAbs. Finally, we found that < 5% of the antibodies in clade B sera bound to epitopes present only in monomeric gp120, 30% bound to epitopes present in both monomeric gp120 and oligomeric gp140, and 70% bound to epitopes present in oligomeric gp140, which includes gp41. Thus, captured oligomeric Env closely reflects the antigenic characteristics of Env protein on the surface of virions and infected cells, retains highly conserved epitopes that are recognized by antibodies raised against different clades, and makes it possible to detect a much greater fraction of total anti-HIV-1 Env activity in sera than does native monomeric gp120.  相似文献   

7.
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.  相似文献   

8.
Abstract Rabbit antibodies were induced against a free cyclic peptide representing the chimeric sequence of a consensus V3 loop of HIV-1 gp120. The reactivity of these antibodies was tested in a biosensor system (BIAcore, Pharmacia AB, Uppsala, Sweden) and in ELISA with the peptide immunogen in its cyclic and linear forms, as well as with peptides corresponding to the V3 region of different HIV-1 variants. The antibodies reacted with all the peptides tested both in ELISA and in biosensor assays and recognized the cyclic form of the chimeric peptide better than the linear form. Although antibodies raised against the V3 region of particular HIV-1 variants cross-react with other HIV-1 strains, it seems that the use of a chimeric peptide as immunogen improved the cross-reactivity spectrum of recognition of the antibodies. The anti-V3 antibodies were also tested for their ability to neutralize in vitro four HIV-1 laboratory strains. Only the HIVMN variant was found to be neutralized. Compared to conventional solid phase immunoassays, the BIAcore presents several advantages for measuring the differential reactivity of peptide analogues. In view of their broadly cross-reactive potential, antibodies raised against a consensus sequence should be useful in immunodiagnosis of viral antigenic variants.  相似文献   

9.
Six chimeric synthetic peptides (QCha-1, QCha-2, QCha-3, QCha-4, QCha-5, and QCha-6) incorporating antigenic sequences of two immunodominant repeat B-cell epitopes of Trypanosoma cruzi were synthesized by conventional solid-phase peptide synthesis. The antigenic activity of these peptides was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels of positive Chagasic sera (n=82), while specificity was evaluated with samples from healthy blood donors (n=44) and patients with other infectious diseases (n=86). The antigenicity of the chimeric peptides in solid-phase immunoassays was compared with that of the monomeric peptides. Data demonstrated that the chimeric peptide QCha-5 was the most reactive because it detected antibodies to parasite efficiently. The results indicate that chimeric peptide as coating antigen is very useful for the immunodiagnosis of Chagas' disease.  相似文献   

10.
The reactivity of antibodies with dimeric and monomelic peptide antigens was compared by ELISA. A panel of highly purified synthetic peptides of HIV-1 representing defined regions, 598–609 and 524 533 (fusion domain) of gp41 and 306–320 of gpl20, were used as antigens in the ELISA. These peptides were selected and synthesized taking into account the level of sequence conservation of various strains and hydrophilicity. The analysis included sera from 52 HIV-1 infected individuals and 53 HIV-1 negative controls. Both peptides from gp41 were found to be particularly immunoreactive with sera from HIV-1 infected individuals. The frequency of reactivity to the selected peptide from gp120 (V3 loop) in infected individuals was 82%. An interesting observation was that the dimeric peptide antigens had a detection rate more than 4-fold higher than the monomeric antigens. We found that lower levels of antibodies could be detected with dimeric antigens. The peptides reacted with few sera other than HIV-1 positive sera. These results implicate the potential dimeric peptide antigens to be utilized in the serodiagnosis of HIV-1 infection.  相似文献   

11.
A chimeric synthetic peptide incorporating immunodominant epitope of the p19 gag protein (116-134) and the gp46 env protein (178-200) of HTLV-II virus, separated by two glycine residues, was synthesized by conventional solid-phase peptide synthesis. The antigenic activity of this peptide was evaluated by Ultramicro Enzyme-linked immunosorbent assay (UMELISA) by using panels of anti-HTLV-II positive sera (n = 9), anti-HTLV-I/II positive sera (n = 2), HTLV-positive (untypeable) serum samples (n = 1),and anti-HTLV-I positive sera (n = 14), while specificity was evaluated with samples from healthy blood donors (n = 20). The efficacy of the chimeric peptide in solid-phase immunoassays was compared with the monomeric peptides. Data demonstrated that the chimeric peptide was the most reactive because it detected antibodies to virus efficiently. This may be related to peptide adsorption to the solid surface and epitope accessibility to the antibodies. The results indicate that chimeric peptide as coating antigen is very useful for the immunodiagnosis of HTLV-II infection.  相似文献   

12.
Abstract A new capture test utilizing conjugated peptides has been developed for the detection of antibodies elicited against HIV-1. Human sera diluted 1:1000 were incubated in ELISA plates precoated with protein G. The captured IgG were allowed to react with three synthetic peptides corresponding to the gp41 sequence (591–611) YLKDQQLLGIWGCSGKLICTT, the gp120 sequence (314–329) IRIQRGPGRAFVTIGK and the p27 sequence (182–198) EWRFDSRLAFHHVAREL. The peptides were used in the form of N -hydroxysuccinimido-biotin ovalbumin conjugates. Peroxidase-labelled streptavidin was used to detect antigen-antibody complexes. The sensitivity and specificity of detection of antibodies were analyzed with 40 HIV positive sera, 10 seroconverting sera and 21 normal human sera (NHS). The results were compared with a commercial indirect ELISA in which a single conjugated gp41 peptide was used as antigenic probe. This indirect ELISA recognized 100% of the HIV positive and the seroconverting sera. The new capture test using the gp41 conjugated peptide also recognized 100% of the HIV positive sera but was more specific since it gave no false positive results whereas the indirect test did. The gp120 and p27 conjugated peptides detected 35/40 (87.5%) and 31/40 (77.5%) of HIV positive sera respectively and also detected 9/10 (90%) and 10/10 (100%) of the seroconverting sera respectively, without any false positive results (0/21). The proposed new capture test is a very sensitive and specific assay for detecting HIV antibodies.  相似文献   

13.
A new capture test utilizing conjugated peptides has been developed for the detection of antibodies elicited against HIV-1. Human sera diluted 1:1000 were incubated in ELISA plates precoated with protein G. The captured IgG were allowed to react with three synthetic peptides corresponding to the gp41 sequence (591-611) YLKDQQLLGIWGCSGKLICTT, the gp120 sequence (314-329) IRIQRGPGRAFVTIGK and the p27 sequence (182-198) EWRFDSRLAFHHVAREL. The peptides were used in the form of N-hydroxysuccinimido-biotin ovalbumin conjugates. Peroxidase-labelled streptavidin was used to detect antigen-antibody complexes. The sensitivity and specificity of detection of antibodies were analyzed with 40 HIV positive sera, 10 seroconverting sera and 21 normal human sera (NHS). The results were compared with a commercial indirect ELISA in which a single conjugated gp41 peptide was used as antigenic probe. This indirect ELISA recognized 100% of the HIV positive and the seroconverting sera. The new capture test using the gp41 conjugated peptide also recognized 100% of the HIV positive sera but was more specific since it gave no false positive results whereas the indirect test did. The gp120 and p27 conjugated peptides detected 35/40 (87.5%) and 31/40 (77.5%) of HIV positive sera respectively and also detected 9/10 (90%) and 10/10 (100%) of the seroconverting sera respectively, without any false positive results (0/21). The proposed new capture test is a very sensitive and specific assay for detecting HIV antibodies.  相似文献   

14.
The third hypervariable domain V3 of the human immunodeficiency virus type 1 gpl20 envelope glycoprotein contains neutralizing epitopes and plays an important role in the diagnosis of HIV infection . Neutralizing antibodies bind to conserved epitope with sequence GPG of V3 loop. The effect of sequence variation on the antigenic properties of the V3 epitope gp120 was studied using five synthetic peptides. The amino acid sequence of the peptide corresponding to the V3 region gp120 of HIV-1 subtype C showed the highest immunoreactivity. The DNA fragment encoding V3-C region gp120 was synthesized by polymerase chain reaction and cloned into pET41b vector. The recombinant plasmid was expressed in the E. coli cells, and recombinant protein was purified using glutathione-S sepharose affinity chromatography. The serological activity of the recombinant protein was tested using ELISA and compared to activity of similar synthetic peptide. The results of this study showed that most immunoreactive agent was the amino acid sequence of V3 region gp120 of HIV-1 subtype C. The recombinant antigen comprising this sequence was more antigenic than synthetic peptide with the same sequence. The evaluation of this antigen shows that this protein is a good candidate for the immunoassay development.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins function as a membrane-anchored trimer of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Previously, we reported three approaches to stabilize soluble trimers containing parts of the gp41 ectodomains: addition of GCN4 trimeric helices, disruption of the cleavage site between gp120 and gp41, and introduction of cysteines in the gp41 coiled coil to form intersubunit disulfide bonds. Here, we applied similar approaches to stabilize soluble gp140 trimers including the complete gp120 and gp41 ectodomains. A combination of fusion with the GCN4 trimeric sequences and disruption of the gp120-gp41 cleavage site resulted in relatively homogeneous gp140 trimers with exceptional stability. The gp120 epitopes recognized by neutralizing antibodies are intact and exposed on these gp140 trimers. By contrast, the nonneutralizing antibody epitopes on the gp120 subunits of the soluble trimers are relatively occluded compared with those on monomeric gp120 preparations. This antigenic similarity to the functional HIV-1 envelope glycoproteins and the presence of the complete gp41 ectodomain should make the soluble gp140 trimers useful tools for structural and immunologic studies.  相似文献   

16.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

17.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1(JR-FL) Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1(JR-FL) and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein gp120 mediates receptor binding and is the major target for neutralizing antibodies. A broadly neutralizing antibody response is likely to be a critical component of the immune response against HIV-1. Although antibodies against monomeric gp120 are readily elicited in immunized individuals, these antibodies are inefficient in neutralizing primary HIV-1 isolates. As a chronic pathogen, HIV-1 has evolved to avoid an optimal host response by a number of immune escape mechanisms. Monomeric gp120 that has dissociated from the functional trimer presents irrelevant epitopes that are not accessible on functional trimeric envelope glycoproteins. The resulting low level of antigenic cross-reactivity between monomeric gp120 and the functional spike may contribute to the inability of monomeric gp120 to elicit broadly neutralizing antibodies. Attempts to generate native, trimeric envelope glycoproteins as immunogens have been frustrated by both the lability of the gp120-gp41 interaction and the weak association between gp120 subunits. Here, we present solid-phase HIV-1 gp160DeltaCT (cytoplasmic tail-deleted) proteoliposomes (PLs) containing native, trimeric envelope glycoproteins in a physiologic membrane setting. We present data that indicate that the gp160DeltaCT glycoproteins on PLs are trimers and are recognized by several relevant conformational ligands in a manner similar to that for gp160DeltaCT oligomers expressed on the cell surface. The PLs represent a significant advance over present envelope glycoprotein formulations as candidate immunogens for HIV vaccine design and development.  相似文献   

20.
Efforts to develop a protective HIV-1 vaccine have been hindered by difficulties in identifying epitopes capable of inducing broad neutralizing Ab responses. In fact, the high mutation rate occurring in HIV-1 envelope proteins and the complex structure of gp120 as an oligomer associated with gp41 result in a high degree of antigenic polymorphism. To overcome these obstacles, we screened random peptide libraries using sera from HIV-infected subjects to identify antigenic and immunogenic mimics of HIV-1 epitopes. After extensive counterscreening with HIV-negative sera, we isolated peptides specifically recognized by Abs from HIV-1-infected individuals. These peptides behaved as antigenic mimics of linear or conformational HIV-1 epitopes generated in vivo in infected subjects. Consistent with these findings, sera of simian HIV-infected monkeys also recognized the HIV-specific epitopes. The selected peptides were immunogenic in mice, where they elicited HIV-specific Abs that effectively neutralized HIV-1 isolates. These results demonstrate that pools of HIV-1 mimotopes can be selected from combinatorial peptide libraries by taking advantage of the HIV-specific Ab repertoire induced by the natural infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号