首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Jasmonates(JAs)are a class of plant hormones that play important roles in the regulation of plant development and plantdefense.It has been shown that Arabidopsis plants produce much higher levels of anthocyanins when treated exogenouslywith methyl jasmonate(MeJA).However,a molecular link between the JA response and anthocyanin production hasnot been determined.The CORONATINE INSENTITIVE1(COI1)gene is a key player in the regulation of many JA-relatedresponses.In the present study,we demonstrate that the COI1 gene is also required for the JA-induced accumulation ofanthocyanins in Arabidopsis.Furthermore,the MeJA-inducible expression of DIHYDROFLAVONOL REDUCTASE(DFR),anessential component in the anthocyanin biosynthesis pathway,was completely eliminated in the coil mutant.Jasmonate-induced anthocyanin accumulation was found to be independent of auxin signaling.The present results indicate that theexpression of both COI1 and DFR genes is required for the regulation of JA-induced anthocyanin accumulation and thatDFR may be a key downstream regulator for this process.  相似文献   

3.
Jasmonates (JAs) are a class of plant hormones that play important roles in the regulation of plant development and plant defense. It has been shown that Arabidopsis plants produce much higher levels of anthocyanins when treated exogenously with methyl jasmonate (MeJA). However, a molecular link between the JA response and anthocyanin production has not been determined. The CORONATINE INSENTITIVE1 (COI1) gene is a key player in the regulation of many JA-related responses. In the present study, we demonstrate that the COI1 gene is also required for the JA-induced accumulation of anthocyanins in Arabidopsis. Furthermore, the MeJA-inducible expression of DIHYDROFLAVONOL REDUCTASE (DFR), an essential component in the anthocyanin biosynthesis pathway, was completely eliminated in the coil mutant. Jasmonateinduced anthocyanin accumulation was found to be independent of auxin signaling. The present results indicate that the expression of both COI1 and DFR genes is required for the regulation of JA-induced anthocyanin accumulation and that DFR may be a key downstream regulator for this process.  相似文献   

4.
5.
6.
Polycomb group proteins (PcG) play important roles in epigenetic regulation of gene expression. Some core PeG proteins, such as Enhancer of Zeste (E(z)), Suppressor of Zeste (12) (Su(z)12), and Extra Sex Combs (ESC), are conserved in plants. The rice genome contains two E(z)-Iike genes, OsiEZ1 and OsCLF, two homologs of Su(z)12, OsEMF2a and OsEMF2b, and two ESC-like genes, OsFIE1 and OsFIE2. OsFIE1 is expressed only in endosperm; the maternal copy is expressed while the paternal copy is not active. Other rice PcG genes are expressed in a wide range of tissues and are not imprinted in the endosperm. The two E(z)-Iike genes appear to have duplicated before the separation of the dicots and monocots; the two homologs of Su(z)12 possibly duplicated during the evolution of the Gramineae and the two ESC- like genes are likely to have duplicated in the ancestor of the grasses. No homologs of the Arabidopsis seed-expressed PcG genes MEA and FIS2 were identified in the rice genome. We have isolated T-DNA insertion lines in the rice homologs of three PcG genes. There is no autonomous endosperm development in these T-DNA insertion lines. One line with a T-DNA insertion in OsEMF2b displays pleiotropic phenotypes including altered flowering time and abnormal flower organs, suggesting important roles in rice development for this gene.  相似文献   

7.
Transformation and Functional Expression of the rFCA-RRM2 Gene in Rice   总被引:2,自引:0,他引:2  
The primary aim of the present study was to investigate the overexpression of the rice (Oryza sativa L. subsp, japonica var. Zhonghua 11) flowering control gene (rFCA-RRM2) in monocotyledonous model rice. Constitutive expression of rFCA-RRM2 from the Actl-5 rice promoter caused late flowering in transgenic rice and increased grain weight that was more than 50% higher than that of control plants, which is the first demonstration of rFCA-RRM2 being able to increase rice production. Late flowering was accompanied by strong phenotype and some morphological modifications. These observations suggest that rFCA-RRM2 is a useful tool for phenotype improvement and yield enhancement in cereal crops.  相似文献   

8.
In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.  相似文献   

9.
10.
The ubiquitin-dependent protein degradation pathway plays diverse roles in eukaryotes. Previous studies indicate that both F-box and Kelch motifs are common in a variety of organisms. F-box proteins are subunits of E3 ubiquitin ligase complexes called SCFs (SKP1, Cullinl, F-box protein, and Rbxl); they have an N-terminal F-box motif that binds to SKP1 (S-phase kinase associated protein), and often have C-terminal protein-protein interaction domains, which specify the protein substrates for degradation via the ubiquitin pathway. One of the most frequently found protein interaction domains in F-box proteins is the Kelch repeat domain. Although both the F-box and Kelch repeats are ancient motifs, Kelch repeats-containing F-box proteins (KFB) have only been reported for human and Arabidopsis previously. The recent sequencing of the rice genome and other plant genomes provides an opportunity to examine the possible evolution history of KFB. We carried out extensive BLAST searches to identify putative KFBs in selected organisms, and analyzed their relationships phylogenetically. We also carried out the analysis of both gene duplication and gene expression of the KFBs in rice and Arabidopsis. Our study indicates that the origin of KFBs occurs before the divergence of animals and plants, and plant KFBs underwent rapid gene duplications.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
FPA is a gene that regulates flowering time in Arabidopsis via a pathway that is independent of daylength (the autonomous pathway). Mutations in FPA result in extremely delayed flowering. FPA was identified by means of positional cloning. The predicted FPA protein contains three RNA recognition motifs in the N-terminal region. FPA is expressed most strongly in developing tissues, similar to the expression of FCA and LUMINIDEPENDENS, two components of the autonomous pathway previously identified. Overexpression of FPA in Arabidopsis causes early flowering in noninductive short days and creates plants that exhibit a more day-neutral flowering behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号