首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
The Nemertea represent one of a number of invertebrate phyla that display a highly conserved pattern of cell division known as spiral cleavage. The fates of the early blastomeres are known for representatives of some spiralian phyla (i.e., molluscs and annelids) and in these species there appears to be a high degree of conservation in the ultimate fates of particular embryonic cells. The first two cleavage planes bear an invariant relationship to the symmetry properties of the future larval and adult body plan. To investigate whether these properties of spiralian embryo-genesis are shared (conserved) amongst members of other spiralian phyla, individual blastomeres in two- and four-cell embryos of the nemertean, Nemertopsis bivittata, were microinjected with bi-otinylated dextran lineage tracers. N. bivittata is a direct-developing hoplonemertean that forms a nonfeeding larva. When individual blastomeres are injected at the two-cell stage, two sets of complementary labeling patterns (a total of four different patterns) were observed in the ectoderm of the larvae. When cells were injected at the four-cell stage, four different patterns were observed that represented subsets of the four patterns observed in the previous experiment. Unlike the case in the annelids and molluscs, in which the first cleavage plane bears a strict 45° angular relationship to the future dorsoventral axis, the first cleavage plane in N. bivittata can bear one of two different relationships relative to the larval/adult dorsoventral axis. In half the cases examined, the first cleavage plane corresponded roughly to the plane of bilateral symmetry, and in the rest, it lay along a frontal plane. A similar result was observed for the embryos of the indirect-developing heteronemertean, Cerebratutus lacteus. These results indicate that the fates of the four cell quadrants in nemerteans are not directly homologous to those in other spira-lians, such as the annelids and molluscs. For instance, no single cell quadrant appears to contribute a greater share to the formation of ectoderm, as is the case in the formation of the post-trochal region by the D-cell quadrant in annelids and mol-luscs. Rather, two adjacent cell quadrants contribute nearly equally to the formation of dorsal or ventral ectoderm in the larvae. Possible explanations for the determination of dorsoventrality in nemerte-ans, as well as implications of these findings regarding the evolution of spiralian development, are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

2.
To elucidate a relationship between early cleavage planes and dorso-ventral (DV)-axis of sea urchin embryos, a fluorescent dye, Lucifer Yellow CH, was iontophoretically introduced into one blastomere at the 2-cell stage, and the location of the progeny cells was determined in the half-labeled prism larvae by examining the embryos from the animal pole. The boundary plane which divides the embryonic tissue into the labeled and nonlabeled parts was (1) coincident with, (2) perpendicular to, or (3) obliquely crossing the larval plane of bilateral symmetry. The oblique boundaries took only two angles mutually symmetrical with regard to the DV-axis of embryos. Combining these labeling patterns, the tissue of prism larvae could be divided into 8 sectors around the animal-vegetal axis. When the 2-cell stage embryos with different diameters of sister blastomeres were labeled with the dye, one end of the boundary plane was again found at one of the 8 boundary points noticed in equally cleaved embryos, while the other was observed to fall in the middle of a sector. These results indicate that the DV-axis of the embryo is established according to the spatial arrangement of blastomeres during the 5-6th cleavage stages when blastomeres align in 8 rows in meridional direction. It was also suggested that intercellular communication takes part in the determination of the fate of individual founder blastomeres during the two subsequent cleavages, i.e., 7-8th cleavage stages.  相似文献   

3.
Examination of early development in five species of the Patiriella sea star species complex indicates that the ancestral-type radial holoblastic cleavage (Type I) is characteristic of P. regularis and P. exigua, whereas cleavage in species from the calcar clade followed multiple alternatives (Types II-IV) from holoblastic to meroblastic. Considering that invariant radial cleavage is thought to play a role in embryonic axis formation in echinoderms, we documented the details of blastomere formation in Patiriella sp. and followed development of the embryos. In Type II cleavage, the first and second cleavage planes appeared simultaneously at one pole of the embryo, dividing it directly into four equally sized blastomeres. In Type III cleavage, the first and second cleavage planes appeared simultaneously, followed promptly by the third cleavage plane, dividing the embryo directly into eight equally sized blastomeres. In Type IV cleavage, numerous furrows appeared simultaneously at one end of the embryo, dividing it into 32-40 equally sized blastomeres. Confocal sections revealed that embryos with cleavage Types II-IV were initially syncytial. The timing of karyokinesis in embryos with Types II and III cleavage was similar to that seen in clutch mates with Type I cleavage. Karyokinesis in embryos with Type IV cleavage, however, differed in timing compared with Type I clutch mates. Alteration in cleavage was not associated with polarized distribution of maternally provided nutrients. For each cleavage type, development was normal to the competent larval stage. Although variable blastomere configuration in the calcar clade may be linked to possession of a lecithotrophic development, other Patiriella species with this mode of development have typical cleavage. The presence of variable cleavage in all calcar clade species indicates that phylogenetic history has played a role in the distribution of this embryonic trait in Patiriella. The plasticity in early cleavage in these sea stars indicates that this aspect of early development is not constrained against change and that there are many ways to achieve multicellularity.  相似文献   

4.
Nemerteans have been alleged to belong to a protostome clade called the Trochozoa that includes mollusks, annelids, sipunculids, echiurids, and kamptozoans and is characterized by, among other things, the trochophore larva. The trochophore possesses a prototroch, a preoral belt of specialized ciliary cells, derived from the trochoblast cells. Nemertea is the only trochozoan phylum for which presence of the trochophore larva possessing a prototroch had never been shown. However, so little is known about nemertean larval development that comparing it with development of other trochozoans is difficult. Development in the nemertean clade Pilidiophora is via a highly specialized planktonic larva, the pilidium, and most of the larval body is lost during a drastic metamorphosis. Other nemerteans (hoplonemerteans and palaeonemerteans) lack a pilidium, and their development is direct, forming either an encapsulated or planktonic "planuliform" larva, producing a juvenile without a dramatic change in body plan. We show that early in the development of a member of a basal nemertean assemblage, the palaeonemertean Carinoma tremaphoros, large squamous cells cover the entire larval surface except for the apical and posterior regions. Although apical and posterior cells continue to divide, the large surface cells cleavage arrest and form a contorted preoral belt. Based on its position, cell lineage, and fate, we suggest that this belt corresponds to the prototroch of other trochozoans. Lack of differential ciliation obscures the presence of the prototroch in Carinoma, but differentiation of the trochoblasts is clearly manifested in their permanent cleavage arrest and ultimate degenerative fate. Our results allow a meaningful comparison between the development of nemerteans and other trochozoans. We review previous hypotheses of the evolution of nemertean development and suggest that a trochophore-like larva is plesiomorphic for nemerteans while a pilidium type of development with drastic metamorphosis is derived.  相似文献   

5.
This survey was performed to characterize the embryogenesis of Prochilodus lineatus. Seven stages of embryo development were identified--zygote, cleavage, blastula, gastrula, segmentation, larval and hatching--after a period of incubation of 22 h (24 degrees C) or 14 h (28 degrees C). The following cleavage pattern was identified: the first plane was vertical (2 blastomeres); the second was vertical and perpendicular to the first (4 blastomeres); the third was vertical and parallel to the first (4 x 2); the fourth cleavage was vertical and parallel to the second (4 x 4); the fifth was vertical and parallel to the first (4 x 8); and the sixth cleavage was horizontal (64 blastomeres). At the blastula stage (3.0-4.0 h (24 degrees C); 1.66-2.0 h (28 degrees C)) irregular spaces were detected and periblast structuring was initiated. At the gastrula stage (4.0-8.0 h (24 degrees C); 3.0-6.0 h (28 degrees C)) the epiboly, convergence and cell movements, as well as the formation of embryonic layers, had begun. The segmentation stage (10.0-15.0 h (24 degrees C); 7.0-10.0 h (28 degrees C)) was characterized by a rudimentary formation of organs and systems (somites, optic vesicle and intestinal delimitation). The embryo at the larval stage (16.0-21.0 h (24 degrees C); 11.0-13.0 h (28 degrees C)) showed a free tail, more than 25 somites, an optic vesicle and a ready-to-hatch larval shape. The blastomeres at cleavage stage had disorganized nuclei indicating high mitotic activity. At gastrula, the blastomeres and the periblast had euchromatic nuclei and a large number of mitochondria and vesicles. The yolk was organized into globose sacs, which were dispersed into small pieces prior to absorption.  相似文献   

6.
The pattern of cleavage was examined during second and third furrowing of the rabbit egg. Two-cell eggs, collected just prior to onset of second cleavage, were continuously observed in a culture chamber, which was kept at 37 degrees C. Semi-cinematographic techniques were used to photograph progressive stages of cleavage. It was demonstrated that the pattern of cleavage in the rabbit differs from that in the sea urchin, because the blastomeres at the 4-cell stage are arranged crosswise in the former, while they are situated next to each other in the latter. The crosswise arrangement of the blastomeres in the rabbit at the 4-cell stage is a consequence of a 90 degree rotation of the polar axis in one hemisphere of the egg. Subsequently, due to the rotation of the original polar axis in one hemisphere, the third cleavage plane through one half of the egg is transverse to the third cleavage plane through the other half. Evidence is provided to show that the cross wise configuration of blastomeres at the 4-cell stage occurs in other eutherian mammals. It is proposed that this rotational cleavage pattern be recognized as distinct from those of radial, spiral and bilateral.  相似文献   

7.
Several recent studies have proposed a model that the organization of the mouse blastocyst is determined by the pattern of early cleavages: the plane of first cleavage divides the two-cell embryo into embryonic (Em) and abembryonic (Ab) halves, while the timing of the second cleavages specifies which blastomere becomes the Em half. This model is still controversial because of conflicting observations in various studies. Here, we investigated the possibility that the difference between mouse strains contributed to the discrepancy of the findings of different experiments regarding the relationship between the first two cleavages and the blastocyst axial pattern. First, we showed by using a lipophilic, fluorescent tracer that the plane of the first cleavage bears no consistent spatial relationship to the Em-Ab axis of the blastocyst regardless of the genotypic background. Secondly, the order of the second cleavage does not correlate with the Em-Ab polarity of the blastocyst. This was demonstrated by tracing the lineage of the early- and later-dividing two-cell stage blastomeres in the whole embryo as well as by comparing the developmental potential of isolated early- and later-dividing blastomeres and chimeras made entirely of early- or later-dividing blastomeres. These results suggest that contrary to recent studies, the differences between the early- and later-dividing blastomeres of the two-cell embryo are not functionally evident and do not define the Em-Ab polarity of the blastocyst. The significance of these findings is discussed in relation to human assisted reproduction and preimplantation genetic diagnosis.  相似文献   

8.
Summary After in vitro fertilization of naked eggs of the polyclad turbellarian, Hoploplana inquilina, both cell separation experiments and deletions of specific blastomeres are possible. With these techniques one can analyze the developmental potential of isolated blastomeres and determine if the embryonic axes have been established at the four-cell stage in this primitive, equally-cleaving spiralian embryo. Two-cell separation experiments with development of both halves resulted in pairs of larvae 1) neither of which had an eye (29%), 2) both of which had one eye (19%), and 3) one of which was eyeless and the other was one-eyed (43%). Deletion of one blastomere at the four-cell stage resulted in 68% one-eyed, 28% two-eyed and 3% eyeless larvae. The one-eyed larvae were asymmetric with respect to eye position with more having right than left eyes. Abnormal or missing ventrolateral lobes occurred with deletion of any of the macromeres at four cells but were significantly more common when A or C rather than B or D was deleted. The experiments support the hypothesis that eye development is a consequence of cytoplasmic localization of both a specific eye precursor and an inducer which segregate independently of cleavage planes, and indicate that the embryonic axes have been determined at the four-cell stage.  相似文献   

9.
Embryos of the indirect developing sea urchin, Heliocidaris tuberculata, and of Heliocidaris erythrogramma which develops directly without the formation of a pluteus larva, were bisected at the two- and four-cell stages. Paired half-embryos resulting from the bisection of H. tuberculata embryos along either the first or the second cleavage plane develop identically into miniature prism stage larvae. As in other indirect developing sea urchins, no differential segregation of developmental potential takes place as a result of the first and second cleavage divisions. Although half-embryos resulting from bisection along the second cleavage plane differentiate all cell types and develop equivalently in H. erythrogramma, the isolated first cleavage blastomeres do not. One of these two cells always forms significantly more mesodermal and endodermal cells. These patterns of differentiation are consistent with fate-mapping studies indicating that most mesodermal and endodermal cells are derived from the prospective ventral blastomere. Therefore, a differential segregation of developmental potential takes place at the first cleavage division in H. erythrogramma. When embryos of H. erythrogramma were bisected during the eight-cell stage, isolated tiers of animal blastomeres typically formed only ectodermal structures including the vestibule, whereas vegetal embryo halves formed all differentiated cell types. We propose that animal-vegetal cell determination and differentiation takes place along an axis which has been shifted relative to the pattern of cell cleavages in the embryos of H. erythrogramma. Vegetal morphogenetic potential for the formation of mesodermal and endodermal structures has become more closely associated with the prospective ventral side of the embryo during the evolution of direct development in Heliocidaris.  相似文献   

10.
Two populations of blastomeres become positionally distinct during fourth cleavage in the mouse embryo; the inner cells become enclosed within the embryo and the outer cells form the enclosing layer. The segregation of these two cell populations is important for later development, because it represents the initial step in the divergence of placental and fetal lineages. The mechanism by which the inner cells become allocated has been thought to involve the oriented division of polarized 8-cell blastomeres, but this has never been examined in the intact embryo. By using the technique of time-lapse cinemicrography, we have been able for the first time to directly examine the division planes of 8-cell blastomeres during fourth cleavage, and find that there are three, rather than two, major division plane orientations; anticlinal (perpendicular to the outer surface of the blastomere), periclinal (parallel to the outer surface of the blastomere), and oblique (at an angle between the other two). The observed frequencies of each type of division plane orientation provide evidence that the inner cells of the morula must derive from oriented division of 8-cell blastomeres, in accordance with the polarization hypothesis. Analysis of fourth cleavage division plane orientation with respect to either lineage or division order reveals that it is not associated with lineage from either the 2- or the 4-cell stage, but has a slight statistical association with fourth cleavage division order. The lack of association between division plane orientation and lineage supports the prediction that packing patterns and intercellular interactions within the 8-cell embryo during compaction play a role in determining fourth cleavage division plane orientation and thus, the positional fate of the daughter 16-cell blastomeres.  相似文献   

11.
The third cleavage plane in typical Xenopus embryos is horizontal. However, there are numbers of cases in which the third cleavage plane slants and yet the embryo develops normally. Pairs of animal-dorsal (AD) blastomeres of eight-cell stage Xenopus embryos with horizontal or oblique third cleavage plane were marked by intracellular injection of fluorescein dextran amine in order to locate their progeny. In neurulae, progeny of AD blastomeres was found mainly along the dorsal midline forming longitudinal clonal bands along the midline in the neural plate and the mesoderm underneath. AD blastomeres with oblique third cleavage plane further yielded the ventral endo-mesoderm in the head. On the other hand, they formed narrower clonal bands in the anterior ectoderm compared with AD blastomeres with horizontal third cleavage plane. Thus the fates of animal-dorsal brastomeres of eight-cell stage Xenopus embryos vary according to the specific patterns of the third cleavage plane. This indicates that the third cleavage in the Xenopus embryo does not affect the normal fate of each region of the embryo presumed at the eight-cell stage.  相似文献   

12.
 Embryos acquire axial properties (e.g., the animal-vegetal, dorsoventral and bilateral axes) at various times over the course of their normal developmental programs. In the spiral-cleaving nemertean, Cerebratulus lacteus, lineage tracing studies have shown that the dorsoventral axis is set up prior to the first cleavage division; however, blastomeres isolated at the two-cell stage will regulate to form apparently perfect, miniature pilidium larvae. We have examined the nature of axial specification in this organism by determining whether partial embryos retain the original embryonic/larval axial properties of the intact embryo, or whether new axial relationships are generated as a consequence of the regulatory process. Single blastomeres in two-cell stage embryos were injected with lineage tracer, and were then bisected along the second cleavage plane at the four-cell stage. Thus, the relationship between the plane of the first cleavage division and various developmental axes could be followed throughout development in the ”half-embryos”. While some embryo fragments appear to retain their original animal-vegetal and dorsoventral axes, many fragments generate novel axial properties. These results indicate that axial properties set up and used during normal development in C. lacteus can be completely reorganized during the course of regulation. While certain embryonic axes, such as the animal-vegetal and dorsoventral axes, appear to be set up prior to first cleavage, these axes and associated cell fates are not irreversibly fixed until later stages of development in normal intact embryos. In C. lacteus, the process whereby these properties are ultimately determined is apparently controlled by complex sets of cell-cell interactions. Received: 11 October 1996 / Accepted: 21 February 1997  相似文献   

13.
Summary The embryo ofSabellaria cementarium (Polychaeta) forms a polar lobe at each of the first two cleavage divisions which becomes absorbed into one of the blastomeres at the end of the division. Lobe removal experiments show that the polar lobe preceding first cleavage is necessary for the development of the apical tuft and the posttrochal region of the trochophore larva. The polar lobe preceding second cleavage is smaller than the first polar lobe and is necessary only for post-trochal region development. In blastomere isolation experiments, isolates containing the C but not the D blastomere form apical tufts. Isolates containing the D but not the C blastomere do not form apical tufts. When the polar lobe preceding second cleavage is removed and the C and D blastomeres are separated and raised in isolation, each can form an apical tuft. When the second cleavage is equalized with sodium dodecyl sulfate (SDS) such that both the C and the D blastomeres receive second polar lobe material, no apical tuft is formed. These results suggest that apical tuft determinants are distributed to both the C and D blastomeres at second cleavage but that the second polar lobe contains an inhibitor for apical tuft formation which is shunted to the D blastomere after the completion of second cleavage.  相似文献   

14.
Annelid embryos are comprised of yolk-deficient animal and yolk-filled vegetal blastomeres. This "unipolar" organization along the animal-vegetal axis (in terms of ooplasmic distribution) is generated via selective segregation of yolk-free, clear cytoplasm to the animal blastomeres. The pathway that leads to the unipolar organization is different between polychaetes and clitellates (i.e., oligochaetes and hirudinidans). In polychaetes, the clear cytoplasm domain, which is established through ooplasmic segregation at the animal side of the egg, is simply cut up by unequal equatorial cleavage. In clitellates, localization of clear cytoplasm to animal blastomeres is preceded by unification of the initially separated polar domains of clear cytoplasm, which result from bipolar ooplasmic segregation. In this article, I have reviewed recent studies on cytoskeletal mechanisms for ooplasmic localization during early annelid development. Annelid eggs accomplish ooplasmic rearrangements through various combinations of three cytoskeletal mechanisms, which are mediated by actin microfilaments, microtubules and mitotic asters, respectively. One of the unique features of annelid eggs isthat a homologous process is driven by distinct cytoskeletal elements. Annelid eggs may provide an intriguing system to investigate not only mechanical aspects of ooplasmic segregation but also evolutionary divergence of cytoskeletal mechanisms that operate in a homologous process.  相似文献   

15.
Experimental manipulations of the energy content of marine invertebrate embryos have been useful in testing key assumptions of life history theory, especially those concerning relationships between egg size, length of the planktonic period, and juvenile size and quality. However, methods for such “allometric engineering” experiments have been available for only a limited set of taxa (those with regulative early development, e.g., cnidarians and echinoderms). Here, we describe a method for the reduction of embryo energy content in the spirally cleaving embryos of a marine annelid, Capitella teleta, by targeted deletion of endodermal precursor cells. Embryos of C. teleta in which up to three cells (the macromeres 3A, 3B, and 3C) were deleted formed morphologically normal lecithotrophic larvae that were much smaller than larvae developing from control embryos. Experimental larvae metamorphosed at high rates, forming juveniles that were smaller than control juveniles. Juveniles derived from treated embryos had functional midguts, ingested and digested food, and grew into sexually mature adults. These results are consistent with those from previous allometric engineering studies of echinoid echinoderms, which suggest that in facultatively planktotrophic or lecithotrophic species, little maternally derived energy is used for construction of the larval body; instead, the majority is allocated to the formation of a large, high‐quality juvenile. Cleavage programs are highly conserved among divergent spiralian taxa (e.g., molluscs, nemerteans, and platyhelminths), so this method will likely be applicable to a diverse set of embryos. Similar experiments carried out in these diverse taxa will be extremely useful for evaluating inferences on relationships between egg size, length of the planktonic period, and juvenile size and quality previously based only on experiments on echinoid echinoderms.  相似文献   

16.
A small polar lobe forms at the first and second cleavage divisions in the gastropod mollusc Crepidula fornicata. These lobes normally fuse with the blastomeres that give rise to the D quadrant at the two- and four-cell stages (cells ultimately generating the 4d mesentoblast and D quadrant organizer). Significantly, removal of the small polar lobe had no noticeable effect on subsequent development of the veliger larva. The behavior of the polar lobe and characteristic early cell shape changes involving protrusion of the 3D macromere at the 24-cell suggest that the D quadrant is specified prior to the sixth cleavage division. On the other hand, blastomere deletion experiments indicate that the D quadrant is not determined until the time of formation of the 4d blastomere (mesentoblast). In fact, embryos can undergo regulation to form normal-appearing larvae if the prospective D blastomere or 3D macromere is removed. Removal of the 4d mesentoblast leads to highly disorganized, radial development. Removal of the first quartet micromeres at the 8-cell stage also leads to the development of radialized larvae. These findings indicate that the embryos of C. fornicata follow the mode of development exhibited by equal-cleaving spiralians, which involves conditional specification of the D quadrant organizer via inductive interactions, presumably from the first quartet micromeres.  相似文献   

17.
Egg volume of a tropical sea urchin Echinometra mathaei is about one half that of other well-known species. We asked whether such a small size of eggs affected the timings of early developmental events or not. Cleavages became asynchronous from the 7th cleavage onward, and embryos hatched out before completion of the 9th cleavage. These timings were one cell cycle earlier than those in well-known sea urchins, raising the possibility that much earlier events, such as the increase in adhesiveness of blastomeres or the specification of dorso-ventral axis (DV-axis), would also occur earlier by one cell cycle. By examining the pseudopodia formation in dissociated blastomeres, it was elucidated that blastomeres in meso- and macromere lineages became adhesive after the 4th and 5th cleavages, respectively. From cell trace experiments, it was found that the first or second cleavage plane was preferentially employed as the median plane of embryo; the DV-axis was specified mainly at the 16-cell stage. Timings of these events were also one cell cycle earlier than those in Hemicentrotus pulcherrimus. The obtained results suggest that most of the early developmental events in sea urchin embryos do not depend on cleavage cycles, but on other factors, such as the nucleo-cytoplasmic ratio.  相似文献   

18.
Summary

Blastomere deletion experiments at the two- and four-cell stages were carried out on the embryo of the polyclad turbellarian Hoploplana inquilina to further examine the relationship between spiral cleavage and early embryonic determination in primitive spiralians. Deletion of one cell at the two-cell stage resulted in “half” larvae that were abnormal in body shape, lobe development, and behavior. Deletion of one cell at the four-cell stage produced less abnormal “three-quarter” larvae which were still underdeveloped in one of the quadrants. A 3:1 ratio of one-eyed to two-eyed larvae implies that deletion of any one of three blastomeres results in loss of an eye, with two constituting the eye lineage and the third controlling the development of two eyes. The results demonstrate that the polyclad embryo is determined early in development, though significant cell interactions occur during cleavage, and suggest that determinative development and quartet spiral cleavage are always associated and probably represent a primitive, strongly conserved evolutionary condition.  相似文献   

19.
Summary The movements of blastomere surfaces marked with carbon particles during cytokinesis of the Ist–IVth cleavage divisions in the eggs of the gastropodsLymnaea stagnalis, L. palustris, Physa acuta and Ph. fontinalis have been studied by time-lapse cinematographic methods. The vitelline membrane was removed with trypsin. At 2- and 4-cell stages shifts of nuclei have also been studied.Symmetrical as well as asymmetrical surface movements (in respect to the furrow plane) have been revealed. Symmetrical surface movements at the beginning of cytokinesis consist mainly in contraction of the furrow zone and in expansion of the more peripheral regions; between these there is a stationary zone. After the end of cytokinesis the furrow region expands.Considerableasymmetrical surface movements have also been observed in all four divisions. From anaphase until the end of cytokinesis each of the two sister blastomeres rotates with respect to the other in such a way, that if viewed along the spindle axis, the blastomere nearest to the observer rotates dexiotropically in a dextral species and laeotropically in a sinistral species (primary rotations). After the completion of cytokinesis the blastomeres may rotate in a reverse direction. The latter rotations are less pronounced in the IInd and IIIrd divisions and most pronounced in the IVth division. Blastomeres with the vitelline membrane intact retain a slight capacity for primary rotations. In normal conditions nuclei of the first two blastomeres shift mainly laeotropically in dextral species, but dexiotropically in sinistral species, being carried along by the reverse surface rotations.The invariable primary asymmetrical rotations of blastomeres seem to be the basis of enantiomorphism in molluscan cleavage. They are assumed to be determined by an asymmetrical structure of the contractile ring carrying out the cytokinesis.  相似文献   

20.
SUMMARY Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister‐phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect‐developing representative of the enteropneust hemichordates, Pty‐ chodera flava. Single blastomeres were iontophoretically labeled with DiI at the 2‐ through 16‐cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct‐developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect‐developing echinoids. The 16‐celled embryo contains eight animal “mesomeres,” four slightly larger “macromeres,” and four somewhat smaller vegetal “micromeres.” The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct‐developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two‐ or the four‐cell stage are capable of forming normal‐appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号