首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin K-dependent (VKD) proteins are modified by the VKD carboxylase as they transit through the endoplasmic reticulum. In a reaction required for their activity, clusters of Glu's are converted to Gla's, and fully carboxylated VKD proteins are normally secreted. In mammalian cell lines expressing high levels of r-VKD proteins, however, under- and uncarboxylated VKD forms are observed. Overexpression of r-carboxylase does not improve carboxylation, but the lack of effect is not understood, and the intracellular events that occur during VKD protein carboxylation have not been investigated. We analyzed carboxylation in 293- and BHK cell lines expressing r-factor IX (fIX) and endogenous carboxylase or overexpressed r-carboxylase. The fIX secreted from the four cell lines was highly carboxylated, indicating fIX-carboxylase engagement during intracellular trafficking. The r-carboxylase was functional for carboxylation: overexpression resulted in a proportional increase in fIX-carboxylase complexes that yielded full fIX carboxylation. Interestingly, the carboxylated fIX product was not efficiently released from the carboxylase in r-fIX/r-carboxylase cells, resulting in decreased fIX secretion. r-Carboxylase overexpression changed the ratios of intracellular fIX to carboxylase, and we therefore developed an in vitro assay to test whether fIX levels affect release. FIX-carboxylase complexes were in vitro carboxylated with or without excess VKD substrate or propeptide. These analyses are the first to dissect the rates of release versus carboxylation and showed that release was much slower than carboxylation. In the absence of excess VKD substrate/propeptide, fIX in the fIX-carboxylase complex was fully carboxylated by 10 min, but 95% was still complexed with carboxylase after 30 min. The presence of excess VKD substrate/propeptide, however, led to a significant increase in VKD product release, possibly through a second propeptide binding site in the carboxylase. The intracellular analyses also showed that the fIX carboxylation rate was slow in vivo and was similar in r-fIX versus r-fIX/r-carboxylase cells, despite the large differences in carboxylase levels. The results suggest that the vitamin K cofactor may be limiting for carboxylation in the cell lines.  相似文献   

2.
The vitamin K-dependent (VKD) carboxylase converts clusters of Glu residues to gamma-carboxylated Glu residues (Glas) in VKD proteins, which is required for their activity. VKD precursors are targeted to the carboxylase by their carboxylase recognition site, which in most cases is a propeptide. We have identified a second tethering site for carboxylase and VKD proteins that is required for carboxylase activity, called the vitamin K-dependent protein site of interaction (VKS). Several VKD proteins specifically bound an immobilized peptide comprising amino acids 343-355 of the human carboxylase (CVYKRSRGKSGQK) but not a scrambled peptide containing the same residues in a different order. Association with the 343-355 peptide was independent of propeptide binding, because the VKD proteins lacked the propeptide and because the 343-355 peptide did not disrupt association of a propeptide factor IX-carboxylase complex. Analysis with peptides that overlapped amino acids 343-355 indicated that the 343-345 CVY residues were necessary but not sufficient for prothrombin binding. Ionic interactions were also suggested because peptide-VKD protein binding could be disrupted by changes in ionic strength or pH. Mutagenesis of Cys(343) to Ser and Tyr(345) to Phe resulted in 7-11-fold decreases in vitamin K epoxidation and peptide (EEL) substrate and carboxylase carboxylation, and kinetic analysis showed 5-6-fold increases in K(m) values for the Glu substrate. These results suggest that Cys(343) and Tyr(345) are near the catalytic center and affect the active site conformation required for correct positioning of the Glu substrate. The 343-355 VKS peptide had a higher affinity for carboxylated prothrombin (K(d) = 5 microm) than uncarboxylated prothrombin (K(d) = 60 microm), and the basic VKS region may also facilitate exiting of the Gla product from the catalytic center by ionic attraction. Tethering of VKD proteins to the carboxylase via the propeptide-binding site and the VKS region has important implications for the mechanism of VKD protein carboxylation, and a model is proposed for how the carboxylase VKS region may be required for efficient and processive VKD protein carboxylation.  相似文献   

3.
Rishavy MA  Berkner KL 《Biochemistry》2008,47(37):9836-9846
Vitamin K-dependent (VKD) proteins become activated by the VKD carboxylase, which converts Glu's to carboxylated Glu's (Gla's) in their Gla domains. The carboxylase uses vitamin K epoxidation to drive Glu carboxylation, and the two half-reactions are coupled in 1:1 stoichiometry by an unknown mechanism. We now report the first identification of a residue, His160, required for coupling. A H160A mutant showed wild-type levels of epoxidation but substantially less carboxylation. Monitoring proton abstraction using a peptide with Glu tritiated at the gamma-carbon position revealed that poor coupling was due to impaired carbanion formation. H160A showed a 10-fold lower ratio of tritium release to vitamin K epoxidation than wild-type enzyme (i.e., 0.12 versus 1.14, respectively), which could fully account for the fold decrease in coupling efficiency. The Ala substitution in His160 did not affect the K m for vitamin K and caused only a 2-fold increase in the K m for Glu and 2-fold decrease in the activation of vitamin K epoxidation by Glu. The H160A K m for CO 2 was 5-fold higher than the wild-type enzyme. However, the k cat for H160A carboxylation was 8-9-fold lower than the wild-type enzyme with all three substrates (i.e., Glu, CO 2, and vitamin K), suggesting a catalytic role for His160 in carbanion formation. We propose that His160 facilitates the formation of the transition state for carbanion formation. His160 is highly conserved in metazoan VKD carboxylases but not in some bacterial orthologues (acquired by horizontal gene transfer), which has implications for how bacteria have adapted the carboxylase for novel functions.  相似文献   

4.
Carboxylation of vitamin K-dependent (VKD) proteins is required for their activity and depends on reduced vitamin K generated by vitamin K oxidoreductase (VKOR) and a redox protein that regenerates VKOR activity. VKD protein carboxylation is inefficient in mammalian cells, and to understand why carboxylation becomes saturated, we developed an approach that directly measures the extent of intracellular VKD protein carboxylation. Analysis of factor IX (fIX)-expressing BHK cells indicated that slow egress of fIX from the endoplasmic reticulum and preferential secretion of the carboxylated form contribute to secreted fIX being more fully carboxylated. The analysis also revealed the first reported in vivo VKD protein turnover, which was 14-fold faster than that which occurs in vitro, suggesting facilitation of this process in vivo. r-VKORC1 expression increased the rate of fIX carboxylation and the extent of secreted carboxylated fIX approximately 2-fold, which shows that carboxylation is the rate-limiting step in fIX turnover and which was surprising because turnover in vitro is limited by release of carboxylated fIX. Interestingly, the increases were significantly smaller than the amount of VKOR overexpression (15-fold). However, when cell extracts were tested in single-turnover experiments in vitro, where redox protein is functionally substituted with dithiothreitol, VKOR overexpression increased the fIX carboxylation rate 14-fold, showing r-VKORC1 is functional for supporting fIX carboxylation. These data indicate that the effect of VKOR overexpression is limited in vivo, possibly because a carboxylation component like the redox protein becomes saturated or because another step is now rate-limiting. The studies illustrate the complexity of carboxylation and potential importance of component stoichiometry to overall efficiency.  相似文献   

5.
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre–propeptide sequences. The propeptide is connected to γ‐carboxylase enzyme through the γ‐carboxylase recognition site for the direct γ‐carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ‐carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ‐carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT‐hFIX‐M14 expression cassette, containing cDNA of hFIX with substituted ?14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4‐fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD‐14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ‐carboxylated hFIX species via barium citrate adsorption demonstrated 2‐fold enhanced recovery in the S2‐expressing hFIXD‐14A relative to that expressed native hFIX. These results show that changing ?14 residues leads to a decrease in the binding affinity to substrate, increase in γ‐carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515–520, 2018  相似文献   

6.
Propeptides of the vitamin K-dependent proteins bind to an exosite on gamma-glutamyl carboxylase; while they are bound, multiple glutamic acids in the gamma-carboxyglutamic acid (Gla) domain are carboxylated. The role of the propeptides has been studied extensively; however, the role of the Gla domain in substrate binding is less well understood. We used kinetic and fluorescence techniques to investigate the interactions of the carboxylase with a substrate containing the propeptide and Gla domain of factor IX (FIXproGla41). In addition, we characterized the effect of the Gla domain and carboxylation on propeptide and substrate binding. For the propeptide of factor IX (proFIX18), FIXproGla41, and carboxylated FIXproGla41, the Kd values were 50, 2.5, and 19.7 nM and the koff values were 273 x 10(-5), 9 x 10(-5), and 37 x 10(-5) s(-1), respectively. The koff of proFIX18 is reduced 3-fold by FLEEL and 9-fold by the Gla domain (residues 1-46) of FIX. The pre-steady state rate constants for carboxylation of FIXproGla41 was 0.02 s(-1) in enzyme excess and 0.016 s(-1) in substrate excess. The steady state rate in substrate excess is 4.5 x 10(-4) s(-1). These results demonstrate the following. 1) The pre-steady state carboxylation rate constant of FIXproGla41 is significantly slower than that of FLEEL. 2) The Gla domain plays an allosteric role in substrate-enzyme interactions. 3) Carboxylation reduces the allosteric effect. 4) The similarity between the steady state carboxylation rate constant and product dissociation rate constant suggests that product release is rate-limiting. 5) The increased dissociation rate after carboxylation contributes to the release of product.  相似文献   

7.
The vitamin K-dependent (VKD) carboxylase converts Glu's to carboxylated Glu's in VKD proteins to render them functional in a broad range of physiologies. The carboxylase uses vitamin K hydroquinone (KH(2)) epoxidation to drive Glu carboxylation, and one of its critical roles is to provide a catalytic base that deprotonates KH(2) to allow epoxidation. A long-standing model invoked Cys as the catalytic base but was ruled out by activity retention in a mutant where every Cys is substituted by Ala. Inhibitor analysis of the cysteine-less mutant suggested that the base is an activated amine [Rishavy et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13732-13737], and in the present study, we used an evolutionary approach to identify candidate amines, which revealed His160, His287, His381, and Lys218. When mutational analysis was performed using an expression system lacking endogenous carboxylase, the His to Ala mutants all showed full epoxidase activity but K218A activity was not detectable. The addition of exogenous amines restored K218A activity while having little effect on wild type carboxylase, and pH studies indicated that rescue was dependent upon the basic form of the amine. Importantly, Br?nsted analysis that measured the effect of amines with different pK(a) values showed that K218A activity rescue depended upon the basicity of the amine. The combined results provide strong evidence that Lys218 is the essential base that deprotonates KH(2) to initiate the reaction. The identification of this base is an important advance in defining the carboxylase active site and has implications regarding carboxylase membrane topology and the feedback mechanism by which the Glu substrate regulates KH(2) oxygenation.  相似文献   

8.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase.  相似文献   

9.
Patients with mutation L394R in gamma-glutamyl carboxylase have a severe bleeding disorder because of decreased biological activities of all vitamin K-dependent coagulation proteins. Vitamin K administration partially corrects this deficiency. To characterize L394R, we purified recombinant mutant L394R and wild-type carboxylase expressed in baculovirus-infected insect cells. By kinetic studies, we analyzed the catalytic activity of mutant L394R and its binding to factor IX's propeptide and vitamin KH(2). Mutant L394R differs from its wild-type counterpart as follows: 1) 110-fold higher K(i) for Boc-mEEV, an active site-specific, competitive inhibitor of FLEEL; 2) 30-fold lower V(max)/K(m) toward the substrate FLEEL in the presence of the propeptide; 3) severely reduced activity toward FLEEL carboxylation in the absence of the propeptide; 4) 7-fold decreased affinity for the propeptide; 5) 9-fold higher K(m) for FIXproGla, a substrate containing the propeptide and the Gla domain of human factor IX; and 6) 5-fold higher K(m) for vitamin KH(2). The primary defect in mutant L394R appears to be in its glutamate-binding site. To a lesser degree, the propeptide and KH(2) binding properties are altered in the L394R mutant. Compared with its wild-type counterpart, the L394R mutant shows an augmented activation of FLEEL carboxylation by the propeptide.  相似文献   

10.
Vitamin-K-dependent plasma proteins contain a highly conserved propeptide sequence located between the classical hydrophobic leader sequence and the N-terminus of the mature protein. This acts as a recognition sequence for the vitamin-K-dependent carboxylase which catalyses the conversion of specific glutamate residues to gamma-carboxyglutamate (Gla) residues in the adjacent Gla domain. Protein engineering of the 18 residue propeptide from human factor IX has highlighted the importance of residues -16Phe and -10Ala with respect to carboxylase recognition. In addition, studies of haemophilia B patients have shown that C-terminal propeptide residues -4Arg and -1Arg are required for proteolysis of the propeptide from the mature protein. To extend these previous studies we have introduced two novel mutations into the propeptide of human factor IX at positions -17(Val----Asp) and -6(Leu----AsP), and studied the effect of these changes on gamma-carboxylation and proteolytic processing. Both mutations reduce the expression of a calcium-dependent epitope in the Gla domain; however, only -6Leu----Asp shows reduced binding to barium sulphate. In addition, this latter mutation prevents proteolytic processing of the propeptide. These data support the current hypothesis that the propeptide contains two recognition elements: one for carboxylase recognition located towards the N-terminus, and one for propeptidase recognition located near the C-terminus.  相似文献   

11.
Leptospirosis is an emerging infectious disease whose pathology includes a hemorrhagic response, and sequencing of the Leptospira interrogans genome revealed an ortholog of the vitamin K-dependent (VKD) carboxylase as one of several hemostatic proteins present in the bacterium. Until now, the VKD carboxylase was known to be present only in the animal kingdom (i.e. metazoans that include mammals, fish, snails, and insects), and this restricted distribution and high sequence similarity between metazoan and Leptospira orthologs strongly suggests that Leptospira acquired the VKD carboxylase by horizontal gene transfer. In metazoans, the VKD carboxylase is bifunctional, acting as an epoxidase that oxygenates vitamin K to a strong base and a carboxylase that uses the base to carboxylate Glu residues in VKD proteins, rendering them active in hemostasis and other physiologies. In contrast, the Leptospira ortholog showed epoxidase but not detectable carboxylase activity and divergence in a region of identity in all known metazoan VKD carboxylases that is important to Glu interaction. Furthermore, although the mammalian carboxylase is regulated so that vitamin K epoxidation does not occur unless Glu substrate is present, the Leptospira VKD epoxidase showed unfettered epoxidation in the absence of Glu substrate. Finally, human VKD protein orthologs were not detected in the L. interrogans genome. The combined data, then, suggest that Leptospira exapted the metazoan VKD carboxylase for some use other than VKD protein carboxylation, such as using the strong vitamin K base to drive a new reaction or to promote oxidative damage or depleting vitamin K to indirectly inhibit host VKD protein carboxylation.  相似文献   

12.
The γ-glutamyl carboxylase utilizes four substrates to catalyze carboxylation of certain glutamic acid residues in vitamin K-dependent proteins. How the enzyme brings the substrates together to promote catalysis is an important question in understanding the structure and function of this enzyme. The propeptide is the primary binding site of the vitamin K-dependent proteins to carboxylase. It is also an effector of carboxylase activity. We tested the hypothesis that binding of substrates causes changes to the carboxylase and in turn to the substrate-enzyme interactions. In addition we investigated how the sequences of the propeptides affected the substrate-enzyme interaction. To study these questions we employed fluorescently labeled propeptides to measure affinity for the carboxylase. We also measured the ability of several propeptides to increase carboxylase catalytic activity. Finally we determined the effect of substrates: vitamin K hydroquinone, the pentapeptide FLEEL, and NaHCO3, on the stability of the propeptide-carboxylase complexes. We found a wide variation in the propeptide affinities for carboxylase. In contrast, the propeptides tested had similar effects on carboxylase catalytic activity. FLEEL and vitamin K hydroquinone both stabilized the propeptide-carboxylase complex. The two together had a greater effect than either alone. We conclude that the effect of propeptide and substrates on carboxylase controls the order of substrate binding in such a way as to ensure efficient, specific carboxylation.  相似文献   

13.
Stanley TB  Humphries J  High KA  Stafford DW 《Biochemistry》1999,38(47):15681-15687
The binding of the gamma-glutamyl carboxylase to its protein substrates is mediated by a conserved 18 amino acid propeptide sequence found in all vitamin K-dependent proteins. We recently found that the apparent affinities of the naturally occurring propeptides for the carboxylase vary over a 100-fold range and that the propeptide of bone Gla protein has severely impaired affinity for the carboxylase [Stanley, T. B., et al. (1999) J. Biol. Chem. 274, 16940-16944 (1)]. Here we report a consensus propeptide sequence that binds tighter (K(i) = 0.43 nM) to the carboxylase than any known propeptide sequence. Comparing the factor IX propeptide to the propeptides of protein C, bone Gla protein, and prothrombin, the weakest binding propeptides, allowed us to predict which residues might be responsible for these substrates' relatively weak binding to the carboxylase. We then made propeptides with the predicted amino acid changes and determined their binding affinities. The reduced binding affinity of these propeptides relative to that of FIX is due to residues -15 in protein C, -10 and -6 in bone Gla protein, and -9 in prothrombin. A role for the -9 position was not previously recognized but is further shown by our identification of a new, naturally occurring mutation at this position in factor IX which causes a warfarin-sensitive hemophilia B phenotype. In addition, we find that propeptides with mutations found in warfarin-sensitive patients have reduced affinity for the carboxylase, suggesting a physiological relevance of propeptide binding affinity.  相似文献   

14.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the posttranslational modification of select glutamate residues of its vitamin K-dependent substrates to gamma-carboxyglutamate. In this report, we describe a new fluorescence assay that is sensitive and specific for the propeptide binding site of active carboxylase. We employed the assay to make three important observations: (1) A tight binding fluorescein-labeled consensus propeptide can be used to quantify the active fraction of the enzyme. (2) The off-rate for a fluorescein-labeled factor IX propeptide was 3000-fold slower than the rate of carboxylation, a difference that may explain how carboxylase can carry out multiple carboxylations of a substrate during the same binding event. (3) We show evidence that substrate binding to the active site modifies the propeptide binding site of carboxylase. The significant (9-fold) differences in off-rates for the propeptide in the presence and absence of its co-substrates may represent a release mechanism for macromolecular substrates from the enzyme. Additionally, sedimentation velocity and equilibrium experiments indicate a monomeric association of enzyme with propeptide. Furthermore, the carboxylase preparation is monodisperse in the buffer used for our studies.  相似文献   

15.
Precursors of vitamin K-dependent proteins are synthesized with a propeptide that is believed to target these proteins for gamma-carboxylation by the vitamin K-dependent carboxylase. In this study synthetic propeptides were used to investigate gamma-carboxylation of the prothrombin and factor X precursors in rat liver microsomes. The extent of prothrombin processing by the carboxylase was also investigated. Antisera raised against the human prothrombin and factor X propeptides only recognized precursors with the respective propeptide regions. The data demonstrate structural differences in the propeptide region of the prothrombin and the factor X carboxylase substrates which raises questions about the hypothesis of a common propeptide binding site on the carboxylase for all precursors of vitamin K-dependent proteins. The hypothesis of separate binding sites is supported by data which demonstrate differences in binding of the prothrombin and factor X precursors to membrane fragments from rough and smooth microsomes. gamma-Carboxylation of the prothrombin precursors in vitro was investigated with conformational specific antibodies raised against a portion of the Gla (gamma-carboxyglutamic acid) region extending from residue 15 to 24. The synthetic peptide used as antigen contains three of the ten potential Gla sites in prothrombin. It is shown that these antibodies do not recognize mature prothrombin but recognize the decarboxylated protein. It is also demonstrated that the epitope is Ca2(+)-dependent. The antibodies were used to assess gamma-carboxylation of the prothrombin precursor in membrane fragments from microsomal membranes. The results suggest that microsomal gamma-carboxylation does not involve Glu residues 16, 19 and 20 of the Gla region.  相似文献   

16.
The cone snail is the only invertebrate system in which the vitamin K-dependent carboxylase (or gamma-carboxylase) and its product gamma-carboxyglutamic acid (Gla) have been identified. It remains the sole source of structural information of invertebrate gamma-carboxylase substrates. Four novel Gla-containing peptides were purified from the venom of Conus textile and characterized using biochemical methods and mass spectrometry. The peptides Gla(1)-TxVI, Gla(2)-TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI each have six Cys residues and belong to the O-superfamily of conotoxins. All four conopeptides contain 4-trans-hydroxyproline and the unusual amino acid 6-l-bromotryptophan. Gla(2)-TxVI/A and Gla(2)-TxVI/B are isoforms with an amidated C-terminus that differ at positions +1 and +13. Three isoforms of Gla(3)-TxVI were observed that differ at position +7: Gla(3)-TxVI, Glu7-Gla(3)-TxVI and Asp7-Gla(3)-TxVI. The cDNAs encoding the precursors of the four peptides were cloned. The predicted signal sequences (amino acids -46 to -27) were nearly identical and highly hydrophobic. The predicted propeptide region (-20 to -1) that contains the gamma-carboxylation recognition site (gamma-CRS) is very similar in Gla(2)-TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI, but is more divergent for Gla(1)-TxVI. Kinetic studies utilizing the Conusgamma-carboxylase and synthetic peptide substrates localized the gamma-CRS of Gla(1)-TxVI to the region -14 to -1 of the polypeptide precursor: the Km was reduced from 1.8 mm for Gla (1)-TxVI lacking a propeptide to 24 microm when a 14-residue propeptide was attached to the substrate. Similarly, addition of an 18-residue propeptide to Gla(2)-TxVI/B reduced the Km value tenfold.  相似文献   

17.
The vitamin K-dependent blood-clotting proteins contain a gamma-carboxylation recognition site in the propeptide, between the signal peptide and the mature protein, that directs gamma-carboxylation of specific glutamic acid residues. To develop a better substrate for the in vitro assay of the vitamin K-dependent gamma-carboxylase and to understand the substrate recognition requirements of the carboxylase, we prepared synthetic peptides based upon the structure of human proprothrombin. These peptides were employed as substrates for in vitro carboxylation using a partially purified form of the bovine liver carboxylase. A 28-residue peptide (HVFLAPQQARSLLQRVRRANTFLEEVRK), based on residues -18 to +10 in proprothrombin, includes the complete propeptide and the first 10 residues of acarboxyprothrombin. Carboxylation of this peptide is characterized by a Km of 3.6 microM. In contrast, FLEEL is carboxylated with a Km of about 2200 microM. A 10-residue peptide (ANTFLEEVRK), based on residues +1 to +10 in prothrombin, and a 20-residue peptide (ARSLLQRVRRANTFLEEVRK), based on residues -10 to +10 in proprothrombin, are also poor substrates for the carboxylase. Replacement of phenylalanine with alanine at residue 3 (equivalent to position -16 in proprothrombin) in the 28-residue peptide significantly alters the Km to 200 microM. A synthetic propeptide (HVFLAPQQARSLLQRVRRY), homologous to residues -18 to -1 in proprothrombin, inhibited carboxylation of the 28-residue peptide substrate with a Ki of 3.5 microM, but modestly stimulated the carboxylation of the 5- and 10-residue peptide substrates. These results indicate that an intact carboxylation recognition site is required for efficient in vitro carboxylation and that this site includes critical residues in region -18 to -11 of proprothrombin. The carboxylation recognition site in the propeptide binds directly to the carboxylase or to a closely associated protein.  相似文献   

18.
Vitamin K dependent carboxylase (carboxylase) is a membrane-associated endoplasmic reticular enzyme that catalyzes the conversion of certain glutamate residues of essential blood coagulation proteins to gamma-carboxyglutamyl (Gla) residues. A series of N-bromoacetyl-peptide substrate affinity labels based on the Gla domain of these blood-clotting proteins was synthesized, and the substrate and inactivator kinetic parameters were assessed. The most promising of these affinity peptides, N-bromoacetyl-FLEELY, was both substrate for carboxylase and an irreversible time-dependent inactivator of the enzyme, inactivating 80% of carboxylase under pseudo-first-order conditions. Addition of saturating amounts of a competing peptide substrate completely abolished the inhibitory properties of N-bromoacetyl-FLEELY, consistent with inactivation occurring at the active site. The partition ratio of inactivation/carboxylation was 1/30. The 94-kDa carboxylase was purified to 15-50% purity by a modification of a recent protocol [Wu, S.-M., Morris, D. P., & Stafford, D. W. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2236-2240] and covalently labeled with N-bromoacetyl-FLEEL[125I]Y. On silver-stained 10% sodium dodecyl sulfate-polyacrylamide gels, the predominant radiolabeled band was the 94,000 molecular weight species. This result independently validates that the 94-kDa protein is a carboxylase.  相似文献   

19.
The liver microsomal vitamin K-dependent carboxylase catalyzes the post-translational conversion of specific glutamyl to gamma-carboxyglutamyl (Gla) residues in precursor forms of a limited number of proteins. These proteins contain an amino-terminal extension (propeptide) that is presumed to serve as an enzyme recognition site to assure their normal processing. The free, noncovalently bound propeptide has also been shown to stimulate the in vitro activity of this enzyme. This peptide has now been shown to lower the app Km of a low-molecular-weight Glu site substrate while having no influence on the app Km of the other substrates, vitamin KH2, O2, and CO2/HCO3-. Propeptide addition was shown to have no influence on the ratio of the two products of the enzyme, Gla and vitamin K-2,3-epoxide. Stimulation of carboxylase activity by the propeptide from human factor X was observed in a number of rat tissues and in the liver of a number of different species. Stability of the enzyme in crude microsomal preparations was greatly enhanced by the presence of propeptide. These observations are consistent with the hypothesis that this region of the protein substrates for the carboxylase not only serves an enzyme recognition or docking function but also modulates the activity of the enzyme by altering the affinity for one of its substrates.  相似文献   

20.
Domains in the XPA protein important in its role as a processivity factor   总被引:2,自引:0,他引:2  
XPA is a protein essential for nucleotide excision repair (NER) where it is thought to function in damage recognition/verification. We have proposed an additional role, that of a processivity factor, conferring a processive mechanism of action on XPF and XPG, the endonucleases, involved in NER. The present study was undertaken to examine the domain(s) in the XPA gene that are important for the ability of the XPA protein to function as a processivity factor. Using site-directed mutagenesis, mutations were created in several of the exons of XPA and mutant XPA proteins produced. The results showed that the DNA binding domain of XPA is critical for its ability to act as a processivity factor. Mutations in both the zinc finger motif and the large basic cleft in this domain eliminated the ability of XPA to confer a processive mechanism of action on the endonucleases involved in NER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号