首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the phagocytic cell, NADPH oxidase (Nox2) system, cytoplasmic regulators (p47(phox), p67(phox), p40(phox), and Rac) translocate and associate with the membrane-spanning flavocytochrome b(558), leading to activation of superoxide production. We examined membrane targeting of phox proteins and explored conformational changes in p40(phox) that regulate its translocation to membranes upon stimulation. GFP-p40(phox) translocates to early endosomes, whereas GFP-p47(phox) translocates to the plasma membrane in response to arachidonic acid. In contrast, GFP-p67(phox) does not translocate to membranes when expressed alone, but it is dependent on p40(phox) and p47(phox) for its translocation to early endosomes or the plasma membrane, respectively. Translocation of GFP-p40(phox) or GFP-p47(phox) to their respective membrane-targeting sites is abolished by mutations in their phox (PX) domains that disrupt their interactions with their cognate phospholipid ligands. Furthermore, GFP-p67(phox) translocation to either membrane is abolished by mutations that disrupt its interaction with p40(phox) or p47(phox). Finally, we detected a head-to-tail (PX-Phox and Bem1 [PB1] domain) intramolecular interaction within p40(phox) in its resting state by deletion mutagenesis, cell localization, and binding experiments, suggesting that its PX domain is inaccessible to interact with phosphatidylinositol 3-phosphate without cell stimulation. Thus, both p40(phox) and p47(phox) function as diverse p67(phox) "carrier proteins" regulated by the unmasking of membrane-targeting domains in distinct mechanisms.  相似文献   

2.
Neutrophil superoxide production can be potentiated by prior exposure to "priming" agents such as granulocyte/macrophage colony stimulating factor (GM-CSF). Because the mechanism underlying GM-CSF-dependent priming is not understood, we investigated the effects of GM-CSF on the phosphorylation of the cytosolic NADPH oxidase components p47(phox) and p67(phox). Preincubation of neutrophils with GM-CSF alone increased the phosphorylation of p47(phox) but not that of p67(phox). Addition of formyl-methionyl-leucyl-phenylalanine (fMLP) to GM-CSF-pretreated neutrophils resulted in more intense phosphorylation of p47(phox) than with GM-CSF alone and fMLP alone. GM-CSF-induced p47(phox) phosphorylation was time- and concentration-dependent and ran parallel to the priming effect of GM-CSF on superoxide production. Two-dimensional tryptic peptide mapping of p47(phox) showed that GM-CSF induced phosphorylation of one major peptide. fMLP alone induced phosphorylation of several peptides, an effect enhanced by GM-CSF pretreatment. In contrast to fMLP and phorbol 12-myristate 13-acetate, GM-CSF-induced phosphorylation of p47(phox) was not inhibited by the protein kinase C inhibitor GF109203X. The protein-tyrosine kinase inhibitor genistein and the phosphatidylinositol 3-kinase inhibitor wortmannin inhibited the phosphorylation of p47(phox) induced by GM-CSF and by fMLP but not that induced by phorbol 12-myristate 13-acetate. GM-CSF alone did not induce p47(phox) or p67(phox) translocation to the membrane, but neutrophils treated consecutively with GM-CSF and fMLP showed an increase (compared with fMLP alone) in membrane translocation of p47(phox) and p67(phox). Taken together, these results show that the priming action of GM-CSF on the neutrophil respiratory burst involves partial phosphorylation of p47(phox) on specific serines and suggest the involvement of a priming pathway regulated by protein-tyrosine kinase and phosphatidylinositol 3-kinase.  相似文献   

3.
Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47(phox), a major cytosolic component of this oxidase. Protein kinase C zeta (PKC zeta), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC zeta in p47(phox) phosphorylation and in superoxide anion production by human PMN. In vitro incubation of recombinant p47(phox) with recombinant PKC zeta induced a time- and concentration-dependent phosphorylation of p47(phox) with an apparent K(m) value of 2 microM. Phosphopeptide mapping analysis of p47(phox) showed that PKC zeta phosphorylated fewer selective sites in comparison to "conventional" PKCs. Serine 303/304 and serine 315 were identified as targets of PKC zeta by site-directed mutagenesis. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC zeta that correlated to that of p47(phox). A cell-permeant-specific peptide antagonist of PKC zeta inhibited both fMLP-induced phosphorylation of p47(phox) and its membrane translocation. The antagonist also inhibited the fMLP-induced production of oxidant (IC(50) of 10 microM), but not that induced by PMA. The inhibition of PKC zeta expression in HL-60 neutrophil-like cells using antisense oligonucleotides (5 and 10 microM) inhibited fMLP-promoted oxidant production (27 and 50%, respectively), but not that induced by PMA. In conclusion, p47(phox) is a substrate for PKC zeta and participates in the signaling cascade between fMLP receptors and NADPH oxidase activation.  相似文献   

4.
Activation of phagocytic NADPH oxidase requires association of its cytosolic subunits with the membrane-bound flavocytochrome. Extensive phosphorylation of the p47(phox) subunit of NADPH oxidase marks the initiation of this activation process. The p47(phox) subunit then translocates to the plasma membrane, bringing the p67(phox) subunit to cytochrome b558 to form the active NADPH oxidase complex. However, the detailed mechanism for targeting the p47(phox) subunit to the cell membrane during activation still remains unclear. Here, we show that the p47(phox) PX domain is responsible for translocating the p47(phox) subunit to the plasma membrane for subsequent activation of NADPH oxidase. We also demonstrate that translocation of the p47(phox) PX domain to the plasma membrane is not due to interactions with phospholipids but rather to association with the actin cytoskeleton. This association is mediated by direct interaction between the p47(phox) PX domain and moesin.  相似文献   

5.
目的用人离体中性白细胞研究利多卡因对刺激剂诱导超氧阴离子产生,蛋白质酪氨酸磷酸化和NADPH氧化酶组成因子p47^phox和p67^phox从细胞质向细胞膜移动的影响。方法用细胞色素C还原法测定不同浓度利多卡因对3种刺激剂介导的中性白细胞释放超氧阴离子量。用Western blot检测中性白细胞蛋白质的磷酸化及NADPH氧化酶细胞质因子p47^phox和p67^phox的磷酸化。结果利多卡因可呈浓度依赖性抑制f MLP(N-formyl-methionyl-leucyl-phenylalanine)介导的中性白细胞释放超氧阴离子,而对PMA(phorbol 12-myristate 13-acetate)或AA(arachidonic acid)介导的中性白细胞释放超氧阴离子并无影响。利多卡因呈浓度依赖性抑制f MLP介导的中性白细胞蛋白质(86.0,58.0,45.0 kDa)的磷酸化,与利多卡因对中性白细胞释放超氧阴离子的影响相一致,另外利多卡因还可抑制细胞质因子p47^phox和p67^phox的从细胞质向细胞膜的移动,从而抑制NADPH氧化酶释放超氧阴离子。结论利多卡因呈浓度依赖性抑制f MLP介导的中性白细胞产生超氧阴离子,这一作用与抑制细胞的一些蛋白质磷酸化及p47^phox和p67^phox从细胞质向细胞膜移动有关。  相似文献   

6.
The NADPH oxidase of human monocytes is activated upon exposure to opsonized zymosan and a variety of other stimuli to catalyze the formation of superoxide anion. Assembly of the NADPH oxidase complex is believed to be a highly regulated process, and molecular mechanisms responsible for this regulation have yet to be fully elucidated. We have previously reported that cytosolic phospholipase A(2) (cPLA(2)) expression and activity are essential for superoxide anion production in activated human monocytes. In this study, we investigated the mechanisms involved in cPLA(2) regulation of NADPH oxidase activation by evaluating the effects of cPLA(2) on translocation and phosphorylation of p67(phox) and p47(phox). We report that translocation and phosphorylation of p67(phox), as well as p47(phox), occur upon activation of human monocytes and that decreased cPLA(2) protein expression, mediated by antisense oligodeoxyribonucleotides (AS-ODN) specific for cPLA(2) mRNA, blocked the stimulation-induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane fraction. Inhibition of translocation of both p47(phox) and p67(phox) by cPLA(2) AS-ODN was above 85%. Arachidonic acid (AA), a product of cPLA(2) enzymatic activity, completely restored translocation of both of these oxidase components in the AS-ODN-treated, cPLA(2)-deficient human monocytes. These results represent the first report that cPLA(2) activity or AA is required for p67(phox) and p47(phox) translocation in human monocytes. Although cPLA(2) was required for translocation of p47(phox) and p67(phox), it did not influence phosphorylation of these components. These results suggest that one mechanism of cPLA(2) regulation of NADPH oxidase activity is to control the arachidonate-sensitive assembly of the complete oxidase complex through modulating the translocation of both p47(phox) and p67(phox). These studies provide insight into the mechanisms by which activation signals are transduced to allow the induction of superoxide anion production in human monocytes.  相似文献   

7.
Generation of superoxide by professional phagocytes is an important mechanism of host defense against bacterial infection. Several protein kinase C (PKC) isoforms have been found to phosphorylate p47(phox), resulting in its membrane translocation and activation of the NADPH oxidase. However, the mechanism by which specific PKC isoforms regulate NADPH oxidase activation remains to be elucidated. In this study, we report that PKCdelta phosphorylation in its activation loop is rapidly induced by fMLF and is essential for its ability to catalyze p47(phox) phosphorylation. Using transfected COS-7 cells expressing gp91(phox), p22(phox), p67(phox), and p47(phox) (COS-phox cells), we found that a functionally active PKCdelta is required for p47(phox) phosphorylation and reconstitution of NADPH oxidase. PKCbetaII cannot replace PKCdelta for this function. Characterization of PKCdelta/PKCbetaII chimeras has led to the identification of the catalytic domain of PKCdelta as a target of regulation by fMLF, which induces a biphasic (30 and 180 s) phosphorylation of Thr(505) in the activation loop of mouse PKCdelta. Mutation of Thr(505) to alanine abolishes the ability of PKCdelta to catalyze p47(phox) phosphorylation in vitro and to reconstitute NADPH oxidase in the transfected COS-phox cells. A correlation between fMLF-induced activation loop phosphorylation and superoxide production is also established in the differentiated PLB-985 human myelomonoblastic cells. We conclude that agonist-induced PKCdelta phosphorylation is a novel mechanism for NADPH oxidase activation. The ability to induce PKCdelta phosphorylation may distinguish a full agonist from a partial agonist for superoxide production.  相似文献   

8.
Tumor necrosis factor alpha (TNF-alpha) receptor-associated factors (TRAFs) play important roles in TNF-alpha signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-alpha also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-alpha signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-alpha (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- +/- 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- +/- 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- +/- 0.2-fold increase in NADPH-dependent O2- production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38(MAPK) activation, which was inhibited by an O2- scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-alpha-induced ERK1/2 activation. In coronary microvascular EC from p47phox-/- mice, TNF-alpha-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-alpha signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.  相似文献   

9.
The neutrophil NADPH oxidase produces superoxide anions in response to infection. This reaction is activated by association of cytosolic factors, p47phox and p67phox, and a small G protein Rac with the membranous flavocytochrome b558. Another cytosolic factor, p40phox, is associated to the complex and is reported to play regulatory roles. Initiation of the NADPH oxidase activation cascade has been reported as consecutive to phosphorylation on serines 359/370 and 379 of the p47phox C terminus. These serines surround a polyproline motif that can interact with the Src homology 3 (SH3) module of p40phox (SH3p40) or the C-terminal SH3 of p67phox (C-SH3p67). The latter one presents a higher affinity in the resting state for p47phox. A change in SH3 binding preference following phosphorylation has been postulated earlier. Here we report the crystal structures of SH3p40 alone or in complex with a 12-residue proline-rich region of p47phox at 1.46 angstrom resolution. Using intrinsic tryptophan fluorescence measurements, we compared the affinity of the strict polyproline motif and the whole C terminus peptide with both SH3p40 and C-SH3p67. These data reveal that SH3p40 can interact with a consensus polyproline motif but also with a noncanonical motif of the p47phox C terminus. The electrostatic surfaces of both SH3 are very different, and therefore the binding preference for C-SH3p67 can be attributed to the polyproline motif recognition and particularly to the Arg-368p47 binding mode. The noncanonical motif contributes equally to interaction with both SH3. The influence of serine phosphorylation on residues 359/370 and 379 on the affinity for both SH3 domains has been checked. We conclude that contrarily to previous suggestions, phosphorylation of Ser-359/370 does not modify the SH3 binding affinity for both SH3, whereas phosphorylation of Ser-379 has a destabilizing effect on both interactions. Other mechanisms than a phosphorylation induced switch between the two SH3 must therefore take place for NADPH oxidase activation cascade to start.  相似文献   

10.
Tamura M  Itoh K  Akita H  Takano K  Oku S 《FEBS letters》2006,580(1):261-267
Actin has been reported to enhance the superoxide-generating activity of neutrophil NADPH oxidase in a cell-free system and to interact with p47phox, a regulatory subunit of the oxidase. In the present study, we searched for an actin-binding site in p47phox by far-western blotting and blot-binding assays using truncated forms of p47phox. The amino-acid sequence 319-337 was identified as an actin-binding site, and a synthetic peptide of this sequence bound to actin. The sequence shows no homology to other known actin-binding motifs. It is located in the autoinhibitory region of p47phox and includes Ser-328, a phosphorylation site essential for unmasking. Although a phosphorylation-mimetic p47phox mutant bound to actin with a lower affinity than the wild type, the same mutant interacted with filamentous actin more efficiently than the wild type. A mutant peptide p47phox (319-337, Ser328Glu) bound to filamentous actin more tightly than to monomer actin. These results suggest that p47phox moves to cortical actin when it becomes unmasked in the cells.  相似文献   

11.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

12.
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial in host defense, requires the cytosolic proteins p67(phox) and p47(phox). They translocate to the membrane upon cell stimulation and activate flavocytochrome b(558), the membrane-integrated catalytic core of this enzyme system. The activators p67(phox) and p47(phox) form a ternary complex together with p40(phox), an adaptor protein with unknown function, comprising the PX/PB2, SH3 and PC motif- containing domains: p40(phox) associates with p67(phox) via binding of the p40(phox) PC motif to the p67(phox) PB1 domain, while p47(phox) directly interacts with p67(phox) but not with p40(phox). Here we show that p40(phox) enhances membrane translocation of p67(phox) and p47(phox) in stimulated cells, which leads to facilitated production of superoxide. The enhancement cannot be elicited by a mutant p40(phox) carrying the D289A substitution in PC or a p67(phox) with the K355A substitution in PB1, each being defective in binding to its respective partner. Thus p40(phox) participates in activation of the phagocyte oxidase by regulating membrane recruitment of p67(phox) and p47(phox) via the PB1-PC interaction with p67(phox).  相似文献   

13.
Molecular basis of phosphorylation-induced activation of the NADPH oxidase   总被引:14,自引:0,他引:14  
Groemping Y  Lapouge K  Smerdon SJ  Rittinger K 《Cell》2003,113(3):343-355
The multi-subunit NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of reactive oxygen species. Activation of the NADPH oxidase requires the targeting of a cytoplasmic p40-p47-p67(phox) complex to the membrane bound heterodimeric p22-gp91(phox) flavocytochrome. This interaction is prevented in the resting state due to an auto-inhibited conformation of p47(phox). The X-ray structure of the auto-inhibited form of p47(phox) reveals that tandem SH3 domains function together to maintain the cytoplasmic complex in an inactive form. Further structural and biochemical data show that phosphorylation of p47(phox) activates a molecular switch that relieves the inhibitory intramolecular interaction. This permits p47(phox) to interact with the cytoplasmic tail of p22(phox) and initiate formation of the active, membrane bound enzyme complex.  相似文献   

14.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

15.
Anionic amphiphiles have been shown to influence the NADPH oxidase system. Although one target of the amphiphile action is p47(phox), the cell-free activation of the enzyme in the absence of p47(phox) is also influenced. In the present study, we examined the actions of sodium dodecyl sulfate (SDS) on the NADPH oxidase system in vivo. Treatment of guinea pig neutrophils with the amphiphile caused the translocation of Rac to a membrane fraction and its conversion to the GTP-bound form. Because SDS had little effect on p47(phox), it increased the superoxide production only when p47(phox) was otherwise activated. Inhibitors of phosphoinositide 3-kinases had no effect on the SDS-induced translocation of Rac to the membrane. However, the inhibitors prevented the conversion of Rac to its GTP-bound form, indicating that these two processes can be controlled separately. In a cell-free system, SDS induced the binding of p47(phox) and Rac to the membrane preparation. The SDS concentration inducing the Rac binding was lower than that inducing the p47(phox) binding. Thus we observed that Rac is more sensitive to SDS than p47(phox) both in vivo and in vitro. The results suggest a role of natural amphiphiles such as unsaturated fatty acids in regulation of Rac activation.  相似文献   

16.
Our laboratory is interested in understanding the regulation of NADPH oxidase activity in human monocyte/macrophages. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in human neutrophils; however, the regulatory roles of specific isoforms of PKC in phosphorylating particular oxidase components have not been determined. In this study calphostin C, an inhibitor for both novel PKC (including PKCdelta, -epsilon, -theta;, and -eta) and conventional PKC (including PKCalpha and -beta), inhibited both phosphorylation and translocation of p47phox, an essential component of the monocyte NADPH oxidase. In contrast, GF109203X, a selective inhibitor of classical PKC and PKCepsilon, did not affect the phosphorylation or translocation of p47phox, suggesting that PKCdelta, -theta;, or -eta is required. Furthermore, rottlerin (at doses that inhibit PKCdelta activity) inhibited the phosphorylation and translocation of p47phox. Rottlerin also inhibited O2 production at similar doses. In addition to pharmacological inhibitors, PKCdelta-specific antisense oligodeoxyribonucleotides were used. PKCdelta antisense oligodeoxyribonucleotides inhibited the phosphorylation and translocation of p47phox in activated human monocytes. We also show, using the recombinant p47phox-GST fusion protein, that p47phox can serve as a substrate for PKCdelta in vitro. Furthermore, lysate-derived PKCdelta from activated monocytes phosphorylated p47phox in a rottlerin-sensitive manner. Together, these data suggest that PKCdelta plays a pivotal role in stimulating monocyte NADPH oxidase activity through its regulation of the phosphorylation and translocation of p47phox.  相似文献   

17.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

18.
Kami K  Takeya R  Sumimoto H  Kohda D 《The EMBO journal》2002,21(16):4268-4276
The basic function of the Src homology 3 (SH3) domain is considered to be binding to proline-rich sequences containing a PxxP motif. Recently, many SH3 domains, including those from Grb2 and Pex13p, were reported to bind sequences lacking a PxxP motif. We report here that the 22 residue peptide lacking a PxxP motif, derived from p47(phox), binds to the C-terminal SH3 domain from p67(phox). We applied the NMR cross-saturation method to locate the interaction sites for the non-PxxP peptides on their cognate SH3 domains from p67(phox), Grb2 and Pex13p. The binding site of the Grb2 SH3 partially overlapped the conventional PxxP-binding site, whereas those of p67(phox) and Pex13p SH3s are located in different surface regions. The non-PxxP peptide from p47(phox) binds to the p67(phox) SH3 more tightly when it extends to the N-terminus to include a typical PxxP motif, which enabled the structure determination of the complex, to reveal that the non-PxxP peptide segment interacted with the p67(phox) SH3 in a compact helix-turn-helix structure (PDB entry 1K4U).  相似文献   

19.
Src homology 3 (SH3) domains mediate specific protein-protein interactions crucial for signal transduction and protein subcellular localization. Upon phagocyte stimulation, two SH3 domain-containing cytosolic components of the NADPH oxidase, p47phox and p67phox, are recruited to the membrane where they interact with flavocytochrome b558 to form an activated microbicidal oxidase. Deletion analysis of p47phox and p67phox in transfected K562 cells demonstrated multiple SH3-mediated interactions between p47phox and the transmembrane flavocytochrome b558 and also between the cytosolic components themselves. The core region of p47phox (residues 151-284), spanning both SH3 domains, was required for flavocytochrome-dependent translocation and oxidase activity in whole cells. Furthermore, translocation of p67phox occurred through interactions of its N-terminal domain (residues 1-246) with p47phox SH3 domains. Both of these interactions were promoted by PMA activation of cells and were influenced by the presence of other domains in both cytosolic factors. Deletion analysis also revealed a third SH3 domain-mediated interaction involving the C-termini of both cytosolic factors, which also promoted p67phox membrane translocation. These data provide evidence for a central role for p47phox in regulation of oxidase assembly through several SH3 domain interactions.  相似文献   

20.
NADPH oxidase activation and assembly during phagocytosis   总被引:20,自引:0,他引:20  
Generation of superoxide (O2-) by the NADPH-dependent oxidase of polymorphonuclear leukocytes is an essential component of the innate immune response to invading microorganisms. To examine NADPH oxidase function during phagocytosis, we evaluated its activation and assembly following ingestion of serum-opsonized Neisseria meningitidis, serogroup B (NMB), and compared it with that elicited by serum-opsonized zymosan (OPZ). Opsonized N. meningitidis- and OPZ-dependent generation of reactive oxygen species by polymorphonuclear leukocytes peaked early and then terminated. Phosphorylation of p47phox coincided with peak generation of reactive oxygen species by either stimulus, consistent with a role for p47phox phosphorylation during NADPH oxidase activation, and correlated with phagosomal colocalization of flavocytochrome b558 (flavocytochrome b) and p47phox and p67phox (p47/67phox). Termination of respiratory burst activity did not reflect dephosphorylation of plasma membrane- and/or phagosome-associated p47phox; in contrast, the specific activity of phosphorylated p47phox at the phagosomal membrane increased. Most significantly, termination of oxidase activity paralleled the loss of p47/67phox from both NMB and OPZ phagosomes despite the continued presence of flavocytochrome b. These data suggest that 1) the onset of respiratory burst activity during phagocytosis is linked to the phosphorylation of p47phox and its translocation to the phagosome; and 2) termination of oxidase activity correlates with loss of p47/67phox from flavocytochrome b-enriched phagosomes and additional phosphorylation of membrane-associated p47phox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号