首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Steven I. Reed 《Genetics》1980,95(3):561-577
Thirty-three temperature-sensitive mutations defective in the start event of the cell division cycle of Saccharomyces cerevisiae were isolated and subjected to preliminary characterization. Complementation studies assigned these mutations to four complementation groups, one of which, cdc28, has been described previously. Genetic analysis revealed that these complementation groups define single nuclear genes, unlinked to one another. One of the three newly identified genes, cdc37, has been located in the yeast linkage map on chromosome IV, two meiotic map units distal to hom2.—Each mutation produces stage-specific arrest of cell division at start, the same point where mating pheromone interrupts division. After synchronization at start by incubation at the restrictive temperature, the mutants retain the capacity to enlarge and to conjugate.  相似文献   

2.
Tryptophan auxotroph trp-28 is anomalous since preliminary mapping and suppression studies indicate the presence of a single amber nonsense mutation either late in trpE or early in trpD, but enzymological tests indicate the complete inactivation of both genes in this strain. Since the trpE and trpD genes are contiguous and encode the two subunits of a multifunctional enzyme complex, it was of interest to learn the mechanism of action of this apparent pleiotropic nonsense mutation. Our study has revealed that the phenotype of this strain derives not from a single mutation, but from the presence and interaction of multiple mutations. Besides the recognized amber mutation (designated trpD28), this strain carries two additional, conditionally expressed missense mutations (designated trpE1651 and trpD1652). The trpD28 amber codon maps in the promoter-proximal region 1 of trpD and eliminates the glutamine amidotransferase activity of the bifunctional trpD polypeptide. The trpD1652 mutation maps in the promoter-distal region 2 of trpD and severely reduces (but does not eliminate) the phosphoribosyl transferase activity of the trpD polypeptide. The trpE1651 mutation maps in the anterior part of trpE and causes a rapid loss of activity of the trpE polypeptide, but only when it exists as an uncomplexed subunit. The existence of the two missense mutations escaped prior notice in standard recombinational tests since the nature of each mutation is such that neither is detectable by the nutritional screens normally used in such tests unless an unsuppressed chainterminating mutation, such as trpD28, is also present.  相似文献   

3.
The budding yeast lyt1 mutation causes cell lysis. We report here that lyt1 is an allele of cdc15, a gene which encodes a protein kinase that functions late in the cell cycle. Neither cdc15-1 nor cdc15-lyt1 strains are able to septate at 37°C, even though they may manage to rebud. Cells lyse after a shmoo-like projection appears at the distal pole of the daughter cell. Actin polarizes towards the distal pole but the septins remain at the mother–daughter neck. This morphogenetic response reflects entry into a new round of the cell cycle: the preference for polarization from the distal pole was lost in bud1 cdc15 double mutants; double cdc15-lyt1 cdc28-4 mutants, defective for START, did not develop apical projections and apical polarization was accompanied by DNA replication. The same phenomena were caused by mutations in the genes CDC14, DBF2, and TEM1, which are functionally related to CDC15. Apical polarization was delayed in cdc15 mutants as compared with budding in control cells and this delay was abolished in a septin mutant. Our results suggest that the delayed M/G1 transition in cdc15 mutants is due to a septin-dependent checkpoint that couples initiation of the cell cycle to the completion of cytokinesis.  相似文献   

4.
Intracellular pH (pHi) was determined during arrest and recovery of temperature sensitive-cell division cycle mutants of Saccharomyces cerevisiae. In all mutants, pHi decreased during arrest; but when the mutants were released from arrest a rapid increase in pHi ensued in only cdc28- and cdc37-arrested cells. Both of these mutations cause arrest at 'start', the sole regulatory point in the S. cerevisiae cell cycle. In cells with cdc4 or cdc7 mutations, which arrest past start, pHi remained constant and exhibited a decrease, respectively, upon recovery of growth. The activity of plasma membrane ATPase decreased during the first 30 min of recovery of cdc28-arrested cells, concomitant with the rise in pHi. During the same period, there was no significant change in activity in cdc4-bearing cells, whereas an increase was observed for cdc7-bearing cells. Increase in pHi may be used as a specific signal by S. cerevisiae for start traversal and commitment to a new cycle.  相似文献   

5.
Temperature-sensitive cell division “start” mutants cdc28, cdc36, cdc37, and cdc39 of the yeast Saccharomyces cerevisiae arrested cell division in the G1 phase of the cell cycle in glucose medium. I report here that cdc28, cdc36, and cdc39 mutants were suppressed when grown in carbon catabolite-derepressing medium.  相似文献   

6.
S K Dutcher  L H Hartwell 《Cell》1983,33(1):203-210
Mutations in four nuclear genes, kar1 cdc4, 28, and 37, block or impair nuclear fusion during conjugation of Saccharomyces cerevisiae. Mutations in all four genes are recessive for the caryogamy defect; in matings between diploid cells both of which are heterozygous for any one of the four mutations (-/+ X -/+), caryogamy occurs with normal proficiency. However, mutations in all four genes are "nuclear dominant"; that is, both parent nuclei must contribute one wild-type allele of each gene for successful caryogamy. In order to discriminate between two possible models to explain nuclear dominance, we have examined the caryogamy proficiency of mutant nuclei after they had passed through a heterocaryotic cytoplasm. The kar1, cdc28, and cdc37 caryogamy defects are all phenotypically suppressed in this experiment (cdc4 could not be tested). We conclude from our results that the KAR1, CDC28, and CDC37 gene products can diffuse between nuclei in a heterocaryon and that they probably perform their function for caryogamy prior to cell fusion. One simple model consistent with the roles of CDC28 and CDC37 in mitosis as well as in caryogamy is that these gene products are structural components of the nucleus that must be built into it during one cell cycle in order to permit successful caryogamy at the next G1.  相似文献   

7.
8.
Amber mutations are efficiently and specifically suppressed during protein synthesis in vitro in an Su? S-30 extract at 25 °C, but not at 37 °C. Eight different amber mutations in three different genes have been tested, and all are suppressed. The efficiencies of suppression range from 20 to 35%, when protein synthesis is at the Mg2+ concentration optimal for β-galactosidase synthesis at 25 °C. The suppression efficiency increases to approximately 60% at higher Mg2+ concentrations, and is reduced to less than 5% at very low concentrations. Ochre and UGA mutations are not suppressed at all under these conditions. The amber suppression is inhibited by addition of a purified protein synthesis release factor to the reaction, or when the protein synthesis reaction takes place in extracts derived from bacteria which are streptomycin-resistant.  相似文献   

9.
The Role of S. CEREVISIAE Cell Division Cycle Genes in Nuclear Fusion   总被引:28,自引:4,他引:24       下载免费PDF全文
Forty temperature-sensitive cell division cycle (cdc) mutants of Saccharomyces cerevisiae were examined for their ability to complete nuclear fusion during conjugation in crosses to a CDC parent strain at the restrictive temperature. Most of the cdc mutant alleles behaved as the CDC parent strain from which they were derived, in that zygotes produced predominantly diploid progeny with only a small fraction of zygotes giving rise to haploid progeny (cytoductants) that signalled a failure in nuclear fusion. However, cdc4 mutants exhibited a strong nuclear fusion (karyogamy) defect in crosses to a CDC parent and cdc28, cdc34 and cdc37 mutants exhibited a weak karyogamy defect. For all four mutants, the karyogamy defect and the cell cycle defect cosegregated, suggesting that both defects resulted from a single lesion for each of these cdc mutants. Therefore, the cdc 4, 28, 34 and 37 gene products are required in both cell division and karyogamy.  相似文献   

10.
11.
We screened for mutations that resulted in lethality when the G1 cyclin Cln2p was overexpressed throughout the cell cycle in Saccharomyces cerevisiae. Mutations in five complementation groups were found to give this phenotype, and three of the mutated genes were identified as MEC1, NUP170, and CDC14. Mutations in CDC14 may have been recovered in the screen because Cdc14p may reduce the cyclin B (Clb)-associated Cdc28 kinase activity in late mitosis, and Cln2p may normally activate Clb-Cdc28 kinase activity by related mechanisms. In agreement with the idea that cdc14 mutations elevate Clb-Cdc28 kinase activity, deletion of the gene for the Clb-Cdc28 inhibitor Sic1 caused synthetic lethality with cdc14-1, as did the deletion of HCT1, which is required for proteolysis of Clb2p. Surprisingly, deletion of the gene for the major B-type cyclin, CLB2, also caused synthetic lethality with the cdc14-1 mutation. The clb2 cdc14 strains arrested with replicated but unseparated DNA and unseparated spindle pole bodies; this phenotype is distinct from the late mitotic arrest of the sic1::TRP1 cdc14-1 and the cdc14-1 hct1::LEU2 double mutants and of the cdc14 CLN2 overexpressor. We found genetic interactions between CDC14 and the replication initiator gene CDC6, extending previous observations of interactions between the late mitotic function of Cdc14p and control of DNA replication. We also describe genetic interactions between CDC28 and CDC14.  相似文献   

12.
The bacteriophage T4 uvsW, uvsX and uvsY gene functions are required for wild-type levels of recombination and for normal survival and mutagenesis after treatments with ultraviolet (UV) and ionizing radiations. The ability of uvsX and uvsY mutations to suppress the lethality of gene 49 mutations was used to select temperature-sensitive and amber alleles of these two genes. (uvsW mutations do not suppress gene 49 mutations.) A simple and powerful complementation test was developed to assist in assigning uvs mutations to genes. The amber alleles of uvsX and uvsY behave as simple null alleles, fully suppressing a gene 49 defect, enhancing UV killing and abolishing UV mutagenesis. However, the properties of the ts alleles of uvsX and uvsY demonstrated that suppression of a gene 49 defect, sensitivity to UV-induced inactivation and UV mutability can be partially uncoupled. These results prompt the hypothesis that radiation mutagenesis occurs during DNA chain elongation past template damage within a recombinational intermediate rather than within a conventional replication fork.  相似文献   

13.
Cdc28 is the main cyclin-dependent kinase (CDK) directing the cell cycle in the budding yeast Saccharomyces cerevisiae. Besides cyclin binding, Cdc28 requires phosphorylation by the Cak1 kinase to achieve full activity. We have previously isolated carboxy-terminal cdc28CST mutants that are temperature sensitive and exhibit high chromosome instability. Both phenotypes are suppressed by high copy Cak1 in a manner that is independent of its catalytic activity and conversely, combination of cdc28CST and cak1 mutations results in synthetic lethality. Altogether, these results suggest that for the Cdc28 complexes to remain stable and active, an interaction with Cak1 is needed via the carboxyl terminus of Cdc28. We report two-hybrid assay data that support this model, and results that indicate that actively growing yeast cells require an optimum Cdc28:Cak1 ratio. While Cak1 is constitutively active and expressed, dividing cells tightly regulate Cak1 protein levels to ensure presence of adequate levels of Cdc28 CDK activity.  相似文献   

14.
Studies of Mutations in T4 Control Genes 33 and 55   总被引:2,自引:0,他引:2       下载免费PDF全文
H. Robert Horvitz 《Genetics》1975,79(3):349-360
  相似文献   

15.
Novel nematode amber suppressors   总被引:8,自引:3,他引:5       下载免费PDF全文
Hodgkin J 《Genetics》1985,111(2):287-310
Nine amber suppressor mutations were isolated in the nematode Caenorhabditis elegans by reverting amber alleles of a sex-determining gene, tra-3. One suppressor maps to a known locus, sup-5 III , but the other eight map to three new loci, sup-21 X (five alleles), sup-22 IV (two alleles) and sup-23 IV (one allele). Amber alleles of tra-3 and of a dumpy gene, dpy-20, were used to measure the efficiency of suppression; the sup-21 and the sup-22 alleles were both shown to be heterogeneous and generally weaker suppressors than sup-5 alleles, which are homogeneous. The spectrum of mutations suppressed by a strong sup-21 allele, e1957, was investigated and compared to the spectra for the amber suppressors sup-5 III and sup-7 X, using amber alleles in 13 assorted genes. Some of the differences between these spectra may be due to limited tissue specificity in sup-21 expression.—Suppression of dpy-20 was used to show that the sex-linked suppressors sup-7 and sup-21 are not dosage compensated in male (XO) relative to hermaphrodite (XX).—Several uses of amber suppressors are critically discussed: for identifying null mutations, for varying levels of gene activity and for detecting maternal mRNA.  相似文献   

16.
The G1 cyclin Cln2 negatively regulates the mating-factor pathway. In a genetic screen to identify factors required for this regulation, we identified an allele of CDC28 (cdc28-csr1) that blocked this function of Cln2. Cln2 immunoprecipitated from cdc28-csr1 cells was completely defective in histone H1 kinase activity, due to defects in Cdc28 binding and activation by Cln2. In contrast, Clb2-associated H1 kinase and Cdc28 binding was normal in immunoprecipitates from these cells. cdc28-csr1 was significantly deficient in other aspects of genetic interaction with Cln2. The cdc28-csr1 mutation was determined to be Q188P, in the T loop distal to most of the probable Cdk-cyclin interaction regions. We performed random mutagenesis of CDC28 to identify additional alleles incapable of causing CLN2-dependent mating-factor resistance but capable of complementing cdc28 temperature-sensitive and null alleles. Two such mutants had highly defective Cln2-associated kinase, but, surprisingly, two other mutants had levels of Cln2-associated kinase near to wild-type levels. We performed a complementary screen for CDC28 mutants that could cause efficient Cln2-dependent mating-factor resistance but not complement a cdc28 null allele. Most such mutants were found to alter residues essential for kinase activity; the proteins had little or no associated kinase activity in bulk or in association with Cln2. Several of these mutants also functioned in another assay for CLN2-dependent function not involving the mating-factor pathway, complementing the temperature sensitivity of a cln1 cln3 cdc28-csr1 strain. These results could indicate that Cln2-Cdc28 kinase activity is not directly relevant to some CLN2-mediated functions. Mutants of this sort should be useful in differentiating the function of Cdc28 complexed with different cyclin regulatory subunits.  相似文献   

17.
Analysis of radiosensitivity of double mutants in the yeast Saccharomyces cerevisiae revealed that checkpoint genes RAD9, RAD17, RAD24, and RAD53 along with genes CDC28 and NET1 belong to one epistasis group designated the RAD9 group. The use of srm mutations allowed the demonstration of a branched RAD9-dependent pathway of cell radioresistance. Mutation cdc28-srm is hypostatic to rad9Δ, rad17Δ, and rad24Δ being additive with rad53. Mutation net1-srm is hypostatic to rad9Δ and rad53 but additively enhance the effects of mutations rad17Δ and rad24Δ. Gene SRM12/HFI1 is not a member of the RAD9 group. Mutation in gene hfi1-srm manifests the additive effect on mutations rad24Δ and rad9Δ. The analyzed genes can also participate in minor mechanisms of radioresistance that are relatively independent of the above RAD9-dependent mechanism.  相似文献   

18.
The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.  相似文献   

19.
Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.Translation termination is mediated by one of the three stop codons (UAA, UAG, or UGA). When such stop codons arise in coding sequences due to mutations, referred to as nonsense mutations, they lead to abrupt arrest of the translation process. However, the termination efficiency of such nonsense codons is not 100%, as certain tRNAs have the ability to read these nonsense codons. Genetic code ambiguity is seen in several organisms. Stop codons have been shown to have alternate roles apart from translation termination. In organisms from all three domains of life, UGA encodes selenocysteine through a specialized mechanism. In Methanosarcinaceae, UAG encodes pyrrolysine (3). UAA and UAG are read as glutamine codons in some green algae and ciliates such as Tetrahymena and Diplomonads (24), and UAG alone encodes glutamine in Moloney murine leukemia virus (32). UGA encodes cysteine in Euplotes; tryptophan in some ciliates, Mycoplasma species, Spiroplasma citri, Bacillus, and tobacco rattle virus; and an unidentified amino acid in Pseudomicrothorax dubius and Nyctotherus ovalis (30). In certain cases the context of the stop codon in translational readthrough has been shown to play a role; for example, it has been reported that in vitro in tobacco mosaic virus, UAG and UAA are misread by tRNATyr in a highly context-dependent manner (34, 9).Termination suppressors are of three types, i.e., amber, ochre, and opal suppressors, which are named based on their ability to suppress the three stop codons. Amber suppressors can suppress only amber codons, whereas ochre suppressors can suppress ochre codons (by normal base pairing) as well as amber codons (by wobbling) and opal suppressors can read opal and UGG tryptophan codon in certain cases. As described by Sambrook et al. (27), a few amber suppressors can also suppress ochre mutations by wobbling. The suppression efficiency varies among these suppressors, with amber suppressors generally showing increased efficiency over ochre and opal suppressors. supE44, an amber suppressor tRNA, is an allele of and is found in many commonly used strains of Escherichia coli K-12. Earlier studies have shown that supE44 is a weak amber suppressor and that its efficiency varies up to 35-fold depending on the reading context of the stop codon (8).Translational accuracy depends on several factors, which include charging of tRNAs with specific amino acids, mRNA decoding, and the presence of antibiotics such as streptomycin and mutations in ribosomal proteins which modulate the fidelity of the translational machinery. Among these, mRNA decoding errors have been reported to occur at a frequency ranging from about 10−3 to 10−4 per codon. Translational misreading errors also largely depend on the competition between cognate and near-cognate tRNA species. Poor availability of cognate tRNAs increases misreading (18).Several studies with E. coli and Saccharomyces cerevisiae have shown the readthrough of nonsense codons in suppressor-free cells. In a suppressor-free E. coli strain, it has been shown in vitro that glutamine is incorporated at the nonsense codons UAG and UAA (26). It has been reported that overexpression of wild-type tRNAGln in yeast suppresses amber as well as ochre mutations (25). In this study, we have confirmed the presence of an amber suppressor mutation in the glnX gene in a supE44 strain by sequence analysis. This was done essentially because we observed that supE44 could also suppress lacZ ochre mutations, albeit inefficiently. On further investigation using an in vivo luciferase reporter assay system for tRNA-mediated nonsense suppression (28), we found that the efficiency of suppression of amber lesion by supE44 is significantly higher than that reported previously in the literature. An increased ability to suppress ochre and opal nonsense mutations was observed in cells bearing supE44 compared to in the wild type. Such an effect was observed only in the stationary phase and was abolished in logarithmic phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号