首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that electromagnetic fields (EMFs) [GSM 1800 standard (Global System for Mobile Communications, 1800 MHz)] increased sucrose permeation across the blood-brain barrier (BBB) in vitro. The cell culture model used in our previous study was comprised of rat astrocytes in coculture with porcine brain microvascular endothelial cells (PBECs). In this study, after optimization of cell culture conditions, distinctly improved barrier tightness was observed, accompanied by a loss of susceptibility to EMF-related effects on BBB permeability. Cell cultures were exposed for 1-5 days at an average specific absorption rate (SAR) of 0.3 W/kg in the identical exposure system as described before. To quantify barrier tightness, sucrose permeation across exposed PBEC was measured and compared to values of sham exposed cells and to a control group. Additionally, observations in the BBB coculture system were complemented by similar experiments using two other in vitro models, composed of PBEC monocultures with or without serum. These three models display distinctly higher barrier tightness than the previously used system. In all three BBB models, sucrose permeation across the cell layers remained unaffected by exposure to a GSM 1800 field for up to 5 days. We thus could not confirm enhanced permeability of the BBB in vitro after EMF exposure as reported before since the in vitro barrier tightness in these experiments is now more like that of the in vivo situation.  相似文献   

2.
The extensive use of mobile phone communication has raised public concerns about adverse health effects of radiofrequency (RF) electromagnetic fields (EMFs) in recent years. A central issue in this discussion is the question whether EMFs enhance the permeability of the blood-brain barrier (BBB). Here we report an investigation on the influence of a generic UMTS (Universal Mobile Telecommunications System) signal on barrier tightness, transport processes and the morphology of porcine brain microvascular endothelial cell cultures (PBEC) serving as an in vitro model of the BBB. An exposure device with integrated online monitoring system was developed for simultaneous exposure and measuring of transendothelial electrical resistance (TEER) to determine the tightness of the BBB. PBEC were exposed continuously for up to 84 h at an average electric-field strength of 3.4-34 V/m (maximum 1.8 W/kg) ensuring athermal conditions. We did not find any evidence of RF-field-induced disturbance of the function of the BBB. After and during exposure, the tightness of the BBB quantified by 14C-sucrose and serum albumin permeation as well as by TEER remained unchanged compared to sham-exposed cultures. Permeation of transporter substrates at the BBB as well as the localization and integrity of the tight-junction proteins occludin and ZO1 were not affected either.  相似文献   

3.
Allen DD  Geldenhuys WJ 《Life sciences》2006,78(10):1029-1033
For drugs that act in the brain, the blood-brain barrier (BBB) is a considerable physical barrier which influences the distribution of drugs to the brain. The BBB is essentially impermeable for hydrophilic and/or charged compounds. Nutrient membrane transporters have an important physiological role in the transport of essential substances across the BBB required for normal brain function. We and others have shown that these transporters may have utility as drug delivery vectors, thereby increasing brain distribution of these compounds via these systems. In this review, we evaluate molecular (in silico) models of BBB transport proteins. Few BBB membrane transporters have been crystallized, but their crystal structures have a possibility for use in homology modeling. Other techniques commonly used are 2D quantitative structure-activity relationships (QSAR), as well as 3D-QSAR techniques including comparative molecular field analysis (CoMFA) and comparative similarity index analysis (CoMSIA). Each of these models provides valuable information for ascertaining their potential basis for BBB transport and brain drug delivery.  相似文献   

4.
5.
Aluminum (Al) and gallium (Ga) permeations of the blood-brain barrier (BBB) were assessed in rats. Unbound extracellular Al and Ga concentrations were ascertained at the two potential sites of BBB permeation, cerebral capillaries and choroid plexuses, by implantation of microdialysis probes in the frontal cortex and lateral ventricle, respectively. A microdialysis probe implanted in the jugular vein revealed unbound blood Al or Ga concentrations. Al or 67Ga citrate was administered via the femoral vein. Peak Al and Ga concentrations were seen within the first 10 min at all three sites. Area under the curve (concentration vs. time to final sample) values were calculated using RSTRIP. Within-rat overall frontal cortical/blood and lateral ventricular/blood ratios [brain/blood ratios (oBBRs)] were calculated from area under the curve values. Aluminum frontal cortical oBBRs were significantly higher than those for the lateral ventricle. Ga oBBRs were not significantly different between the two sites. Al and Ga oBBRs were significantly different in the lateral ventricle. These results suggest that the primary site of A1 permeation across the BBB is at cerebral capillaries, whereas Ga permeation across the BBB does not significantly differ between cerebral capillaries and choroid plexuses. The use of Ga as a model to study Al pharmacokinetics may not be appropriate in the elucidation of the site or mechanism of Al entry into the brain.  相似文献   

6.
7.
血脑屏障使大部分的活性药物很难由血液进入脑内发挥作用。载药纳米粒具有脑靶向性,可显著提高药物在脑内浓度,成为药物突破血脑屏障的有效途径。本文综述了近年来载药纳米粒透过血脑屏障的研究进展,并对纳米粒载中药入脑提出展望。  相似文献   

8.
9.
There is considerable current interest in the neuroprotective effects of flavonoids. This study focuses on the potential for dietary flavonoids, and their known physiologically relevant metabolites, to enter the brain endothelium and cross the blood-brain barrier (BBB) using well-established in vitro models (brain endothelial cell lines and ECV304 monolayers co-cultured with C6 glioma cells). We report that the citrus flavonoids, hesperetin, naringenin and their relevant in vivo metabolites, as well as the dietary anthocyanins and in vivo forms, cyanidin-3-rutinoside and pelargonidin-3-glucoside, are taken up by two brain endothelial cell lines from mouse (b.END5) and rat (RBE4). In both cell types, uptake of hesperetin and naringenin was greatest, increasing significantly with time and as a function of concentration. In support of these observations we report for the first time high apparent permeability (Papp) of the citrus flavonoids, hesperetin and naringenin, across the in vitro BBB model (apical to basolateral) relative to their more polar glucuronidated conjugates, as well as those of epicatechin and its in vivo metabolites, the dietary anthocyanins and to specific phenolic acids derived from colonic biotransformation of flavonoids. The results demonstrate that flavonoids and some metabolites are able to traverse the BBB, and that the potential for permeation is consistent with compound lipophilicity.  相似文献   

10.
血脑屏障(blood-brain barrier, BBB)是位于中枢神经系统(central nervous system, CNS)和中枢系统环境间的一层生理保护屏障. 凡是作用于CNS 的药物,必须先通过BBB. 为了寻找能够进入CNS的药物,通过细胞培养时间优化 和跨膜电阻测定等,建立了ECV304/C6共培养通过BBB药物筛选模型. 并将该模型应用于从传统中药淫羊藿的提取物中,筛选可能作用于CNS的活性成分,结合高压液相色谱-质谱联用技术(HPLC-MS),对筛选出的化合物进行鉴定分析. 研究结果表明,淫羊藿提取物中至少有13种成分能够穿越BBB模型,其中2种成分被确认为淫羊藿苷和宝藿苷Ⅰ,为CNS药物开发的早期快速筛选提供了实验依据.  相似文献   

11.
血脑屏障使大部分的活性药物很难由血液进入脑内发挥作用。载药纳米粒具有脑靶向性,可显著提高药物在脑内浓度,成为药物突破血脑屏障的有效途径。本文综述了近年来载药纳米粒透过血脑屏障的研究进展,并对纳米粒载中药入脑提出展望。  相似文献   

12.
13.
We previously found that RBE4.B brain capillary endothelial cells (BCECs) form a layer with blood-brain barrier (BBB) properties if co-cultured with neurons for at least one week. As astrocytes are known to modulate BBB functions, we further set a culture system that included RBE4.B BCECs, neurons and astrocytes. In order to test formation of BBB, we measured the amount of 3H-sucrose able to cross the BCEC layer in this three-cell type model of BBB. Herein we report that both neurons and astrocytes induce a decrease in the permeability of the BCEC layer to sucrose. These effects are synergic as if BCECs are cultured with both neurons and astrocytes for 5 days, permeability to sucrose decreases even more. By Western analysis, we also found that, in addition to the canonical 60 kDa occludin, anti-occludin antibodies recognize a smaller protein of 48 kDa which accumulates during rat brain development. Interestingly this latter protein is present at higher amounts in endothelial cells cultured in the presence of both astrocytes and neurons, that is in those conditions in which sucrose permeation studies indicate formation of BBB.  相似文献   

14.
Tight junctions are well-developed between adjacent endothelial cells of blood vessels in the central nervous system, and play a central role in establishing the blood-brain barrier (BBB). Claudin-5 is a major cell adhesion molecule of tight junctions in brain endothelial cells. To examine its possible involvement in the BBB, claudin-5-deficient mice were generated. In the brains of these mice, the development and morphology of blood vessels were not altered, showing no bleeding or edema. However, tracer experiments and magnetic resonance imaging revealed that in these mice, the BBB against small molecules (<800 D), but not larger molecules, was selectively affected. This unexpected finding (i.e., the size-selective loosening of the BBB) not only provides new insight into the basic molecular physiology of BBB but also opens a new way to deliver potential drugs across the BBB into the central nervous system.  相似文献   

15.
The experimental autoimmune encephalomyelitis (EAE) model resembles certain aspects of multiple sclerosis (MScl), with common features such as motor dysfunction, axonal degradation, and infiltration of T-cells. We studied the cerebrospinal fluid (CSF) proteome in the EAE rat model to identify proteomic changes relevant for MScl disease pathology. EAE was induced in male Lewis rats by injection of myelin basic protein (MBP) together with complete Freund's adjuvant (CFA). An inflammatory control group was injected with CFA alone, and a nontreated group served as healthy control. CSF was collected at day 10 and 14 after immunization and analyzed by bottom-up proteomics on Orbitrap LC-MS and QTOF LC-MS platforms in two independent laboratories. By combining results, 44 proteins were discovered to be significantly increased in EAE animals compared to both control groups, 25 of which have not been mentioned in relation to the EAE model before. Lysozyme C1, fetuin B, T-kininogen, serum paraoxonase/arylesterase 1, glutathione peroxidase 3, complement C3, and afamin are among the proteins significantly elevated in this rat EAE model. Two proteins, afamin and complement C3, were validated in an independent sample set using quantitative selected reaction monitoring mass spectrometry. The molecular weights of the identified differentially abundant proteins indicated an increased transport across the blood-brain barrier (BBB) at the peak of the disease, caused by an increase in BBB permeability.  相似文献   

16.
The effects of total-body irradiation on the permeability of rat striatal blood-brain barrier (BBB) to [3H]alpha-aminoisobutyric acid (AIBA) and [14C]sucrose were investigated using the microdialysis technique. Seven days, 3 and 6 weeks, and 3, 5, and 8 months after gamma exposure at a dose of 4.5 Gy, no modification of the permeability to both [3H]AIBA and [14C]sucrose was observed. But, in the course of the initial syndrome, we observed a significant but transient increase in the BBB permeability to the two markers between 3 and 17 h after exposure. A secondary transient "opening" of the BBB to [14C]sucrose was noticed about 28 h following irradiation without the corresponding increase in BBB permeability to [3H]AIBA. On the contrary, the transport of [3H]AIBA through the BBB was decreased between 33 and 47 h postradiation. In conclusion, our experiments showed early modifications of BBB permeability after a moderate-dose whole-body exposure. Confirmation of these results with other tracers, in another experimental model or in humans, would have clinical applications for designing appropriate pharmacotherapy in radiotherapy and treatment of accidental overexposure.  相似文献   

17.
Pan W  Tu H  Kastin AJ 《Peptides》2006,27(4):911-916
Endogenous compounds, including ingestive peptides, can interact with the blood-brain barrier (BBB) in different ways. Here we used in vivo and in vitro techniques to examine the BBB permeation of the newly described satiety peptide obestatin. The fate of obestatin in blood and at the BBB was contrasted with that of adiponectin. By the sensitive multiple time-regression method, obestatin appeared to have an extremely fast influx rate to the brain whereas adiponectin did not cross the BBB. HPLC analysis, however, showed the obestatin result to be spurious, reflecting rapid degradation. Absence of BBB permeation by obestatin and adiponectin was in contrast to the saturable transport of human ghrelin reported previously. As a positive control, ghrelin showed saturable binding and endocytosis in RBE4 cerebral microvessel endothelial cells. By comparison, obestatin lacked specific binding and endocytosis, and the small amount internalized showed rapid intracellular degradation before the radioactivity was released by exocytosis. The differential interactions of obestatin, adiponectin, and ghrelin with the BBB illustrate their distinctive physiological interactions with the CNS.  相似文献   

18.
The peptide urocortin is a member of the corticotropin-releasing factor (CRF) family and a potent satiety signal to the brain. Urocortin in blood does not reach the brain significantly by itself, but its permeation across the blood-brain barrier (BBB) can be enhanced by leptin. How leptin facilitates the influx of urocortin has not been elucidated. In this study, we tested the hypothesis that leptin activates receptor-mediated endocytosis of urocortin. We measured the kinetics of permeation of radioactively labeled urocortin across the mouse BBB and determined the specific effects of leptin and receptor antibodies. The results show that the influx transfer constant of urocortin was enhanced in the presence of leptin and mediated by CRF-2beta, the specific receptor for urocortin. To determine the specificity of this modulation, the effect of leptin was compared with that of TNFalpha. Both TNFalpha and leptin independently facilitated receptor-mediated transport of urocortin across the BBB. Even though TNFalpha and leptin have similar effects on urocortin transport, leptin did not significantly affect the influx of TNFalpha across the BBB. The results indicate that permeation of ingestive peptides and cytokines across the BBB can be acutely modulated, consistent with a role of BBB in regulating feeding behavior. Thus, sites of action of leptin, urocortin, and TNFalpha exist not only in the brain but also at the BBB where they each control the flow of other ingestive signals to CNS targets.  相似文献   

19.
20.
Apolipoprotein E (apoE) is a major apolipoprotein in the brain. The ε4 allele of apoE is a major risk factor for Alzheimer disease, and apoE deficiency in mice leads to blood-brain barrier (BBB) leakage. However, the effect of apoE isoforms on BBB properties are as yet unknown. Here, using an in vitro BBB model consisting of brain endothelial cells and pericytes prepared from wild-type (WT) mice, and primary astrocytes prepared from human apoE3- and apoE4-knock-in mice, we show that the barrier function of tight junctions (TJs) was impaired when the BBB was reconstituted with primary astrocytes from apoE4-knock-in mice (apoE4-BBB model). The phosphorylation of occludin at Thr residues and the activation of protein kinase C (PKC)η in mBECs were attenuated in the apoE4-BBB model compared with those in the apoE3-BBB model. The differential effects of apoE isoforms on the activation of PKCη, the phosphorylation of occludin at Thr residues, and TJ integrity were abolished following the treatment with an anti-low density lipoprotein receptor-related protein 1 (LRP1) antibody or a LRP1 antagonist receptor-associated protein. Consistent with the results of in vitro studies, BBB permeability was higher in apoE4-knock-in mice than in apoE3-knock-in mice. Our studies provide evidence that TJ integrity in BBB is regulated by apoE in an isoform-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号