首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of 6-deoxycyclopropavir (10), a prodrug of cyclopropavir (1) and its in vitro and in vivo antiviral activity is described. 2-Amino-6-chloropurine methylenecyclopropane 13 was transformed to its 6-iodo derivative 14 which was reduced to prodrug 10. It is converted to cyclopropavir (1) by the action of xanthine oxidase and this reaction can also occur in vivo. Compound 10 lacked significant in vitro activity against human cytomegalovirus (HCMV), human herpes virus 1 and 2 (HSV-1 and HSV-2), human immunodeficiency virus type 1 (HIV-1), human hepatitis B virus (HBV), Epstein-Barr virus (EBV), vaccinia virus and cowpox virus. In contrast, prodrug 10 given orally was as active as cyclopropavir (1) reported previously [Kern, E. R.; Bidanset, D. J.; Hartline, C. B.; Yan, Z.; Zemlicka, J.; Quenelle, D. C. et al. Antimicrob. Agents Chemother. 2004, 48, 4745] against murine cytomegalovirus (MCMV) infection in mice and against HCMV in severe combined immunodeficient (SCID) mice.  相似文献   

2.
The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine-acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

3.
4.
A group of unnatural 1-(2-deoxy-beta-D-ribofuranosyl)-2,4-difluorobenzenes having a variety of C-5 two-carbon substituents [-C...C-X, X = I, Br; -C...CH; (E)-CH=CH-X, X = I, Br; -CH=CH2; -CH2CH3; -CH(N3) CH2Br], designed as nucleoside mimics, were synthesized for evaluation as anticancer and antiviral agents. The 5-substituted (E)-CH=CH-I and -CH2CH3 compounds exhibited negligible cytotoxicity in a MTT assay (CC50 = 10(-3) to 10(-4)M range), relative to thymidine (CC50 = 10(-3) to 10(-5)M range), against a variety of cancer cell lines. In contrast, the C-5 substituted -C...C-I and -CH(N3)CH2Br compounds were more cytotoxic (CC50 = 10(-5) to 10(-6)M range). The -C...C-I and -CH2CH3 compounds exhibited similar cytotoxicity against non-transfected (KBALB, 143B) and HSV-1 TK+ gene transfected (KBALB-STK, 143B-LTK) cancer cell lines expressing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK+). This observation indicates that expression of the viral TK enzyme did not provide a gene therapeutic effect. The parent group of 5-substituted compounds, that were evaluated using a wide variety of antiviral assay systems [HSV-1, HSV-2, varicella-zoster virus (VZV), vaccinia virus, vesicular stomatitis, cytomegalovirus (CMV), and human immunodeficiency (HIV-1, HIV-2) viruses], showed that this class of unnatural C-aryl nucleoside mimics are inactive and/or weakly active antiviral agents.  相似文献   

5.
We have reported previously that purine methylenecyclopropane analogs are potent agents against cytomegaloviruses. In an attempt to extend the activity of these compounds, the 2-amino-6-cyclopropylaminopurine analog, QYL-1064, was selected for further study by modifying the purine 6 substituent. A total of 22 analogs were tested against herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), Epstein-Barr virus (EBV), human herpesvirus type 6 (HHV-6) and human herpesvirus type 8 (HHV-8). Ten of the analogs had activity against at least one of the viruses tested. One compound had moderate activity against HSV-1 and six had activity against VZV. All but one compound was active against HCMV with a mean EC50 of 2.1 +/- 0.6 microM, compared with a mean EC50 of 3.9 +/- 0.8 microM for ganciclovir. Of special interest was the fact that eight of the ten compounds were active against both HHV-6A and HHV-6B with mean EC50 values of 6.0 +/- 5.2 mciroM and <2.4 +/- 1.5 microM, respectively. Only two compounds had activity against EBV, whereas all but one compound was active against HHV-8 with a mean EC50 of 3.1 +/- 1.7 microM. These results indicate that members of this series of methylenecyclopropane analogs are highly active against HCMV, HHV-6, and HHV-8 but are less active against HSV, VZV, and EBV.  相似文献   

6.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

7.
The 2',3'-dideoxyriboside (ddDAPR), 2',3'-didehydro-2',3'-dideoxyriboside (ddeDAPR) and 3'-azido-2',3'-dideoxyriboside (AzddDAPR) of 2,6-diaminopurine have been previously recognized as potent inhibitors of human immunodeficiency virus replication. These compounds are also potent inhibitors of adenosine deaminase and inhibit the deamination of 9-beta-D-arabinofuranosyladenine (araA). ddDAPR, ddeDAPR and AzddDAPR markedly potentiate the antiviral activity of araA against herpes simplex virus type 1 (HSV-1), type 2 (HSV-2) and vaccinia virus (VV). When used at a concentration of 20 micrograms/ml, which had by itself no antiviral effect, ddDAPR, ddeDAPR and AzddDAPR increased the ability of araA to suppress HSV-1, HSV-2 and VV yield by several orders of magnitude. The maximum antiviral effect was obtained with the combinations of ddDAPR or ddeDAPR with araA concentrations of 1 and 10 micrograms/ml.  相似文献   

8.
Both methyglyoxal bis(guanylhydrazone), an inhibitor of S-adenosyl-L-methionine decarboxylase (EC.4.1.1.50) and DL-α-methylornithine, an inhibitor of ornithine decarboxylase (EC.4.1.1.17), are shown to be potent inhibitors of the replication of human cytomegalovirus (HCMV) in MRC-5 cells. These compounds, both inhibitors of polyamine biosynthesis, do not affect the replication of either herpes simplex virus type 1 (HSV-1) or herpes simplex virus type 2 (HSV-2). This difference in antiviral effect is shown to be related to the stimulation of spermidine and spermine synthesis in host cells following HCMV infection and the inhibition of polyamine metabolism in HSV-1 or HSV-2-infected cells. Inhibition of HCMV replication by the inhibitors of polyamine biosynthesis is accompanied by a marked decrease in the formation of intranuclear, DNA-containing inclusions characteristic of HCMV infection. These results suggest significant differences in the mechanisms of replication of different herpesviruses.  相似文献   

9.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

10.
The synthesis of dideoxy-6-azathymidine 4'-thionucleoside 1-(2,3-dideoxy-4-thio-beta-D-erythro-pentofuranosyl)-(6-azathymidine) (2), and the L-nucleoside, 1-(4-thio-beta-L-erythro-pentofuranosyl)-(6-azathymidine) (3) and their evaluation against a wide panel of antiviral assays are described. The L-thionucleoside (3) was devoid of antiviral activity. The dideoxy-thionucleoside (2) was moderately active against vaccinia virus (VV) and the herpes simplex virus strains HSV-1 (strain KOS) and HSV-2 (strain G) (MIC 12 microM) and retained inhibitory activity vs a thymidine kinase-deficient strain HSV-1/TK(-), suggesting that (2) is not dependent on viral TK-catalysed phosphorylation for antiviral activity and/or may use an alternative metabolic activation pathway.  相似文献   

11.
Pharmacological cyclin-dependent kinase (cdk) inhibitors (PCIs) block replication of several viruses, including herpes simplex virus type 1 (HSV-1) and human immunodeficiency virus type 1 (HIV-1). Yet, these antiviral effects could result from inhibition of either cellular cdks or viral enzymes. For example, in addition to cellular cdks, PCIs could inhibit any of the herpesvirus-encoded kinases, DNA replication proteins, or proteins involved in nucleotide metabolism. To address this issue, we asked whether purine-derived PCIs (P-PCIs) inhibit HSV and HIV-1 replication by targeting cellular or viral proteins. P-PCIs inhibited replication of HSV-1 and -2 and HIV-1, which require cellular cdks to replicate, but not vaccinia virus or lymphocytic choriomeningitis virus, which are not known to require cdks to replicate. P-PCIs also inhibited strains of HSV-1 and HIV-1 that are resistant to conventional antiviral drugs, which target viral proteins. In addition, the anti-HSV effects of P-PCIs and a conventional antiherpesvirus drug, acyclovir, were additive, demonstrating that the two drugs act by distinct mechanisms. Lastly, the spectrum of proteins that bound to P-PCIs in extracts of mock- and HSV-infected cells was the same. Based on these observations, we conclude that P-PCIs inhibit virus replication by targeting cellular, not viral, proteins.  相似文献   

12.
Antiviral properties of fucoidan fractions from Leathesia difformis.   总被引:4,自引:0,他引:4  
Three fractions of fucoidans isolated from the brown seaweed Leathesia difformis (Ee, Ec and Ea) were found to be selective antiviral agents against herpes simplex virus (HSV) types 1 and 2 and human cytomegalovirus. Fraction Ea was the most active, with IC50 values in the range 0.5-1.9 microg/ml without affecting cell viability at concentrations up to 400 microg/ml. The antiherpetic activity of Ea was assessed by three different methods, plaque reduction, inhibition of virus yield and prevention of HSV-2 induced shut-off of cell protein synthesis, demonstrating that the inhibitory effect was independent of the antiviral assay and the multiplicity of infection. The mode of action of Ea could be ascribed to an inhibitory action on virus adsorption. The fucoidans did not inhibit the blood coagulation process even at concentrations exceeding more than 100 times the IC50 value.  相似文献   

13.

Background  

Herpesviruses are not only infectious agents of worldwide distribution in humans, but have also been demonstrated in various non-human primates as well. Seventy-eight gibbons were subjected to serological tests by ELISA for herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), Epstein-Barr virus (EBV) and cytomegalovirus (CMV).  相似文献   

14.
Triciribine (TCN) and triciribine monophosphate (TCN-P) have antiviral and antineoplastic activity at low or submicromolar concentrations. In an effort to improve and better understand this activity, we have conducted a structure-activity relationship study to explore the effect of substitutions at the 2-position of triciribine. 2-Methyl- (2-Me-TCN), 2-ethyl- (2-Et-TCN), 2-phenyl- (2-Ph-TCN), 2-chloro- (2-Cl-TCN), and 2-aminotriciribine (2-NH2-TCN) were designed and synthesized to determine the effects of substitutions at the 2-position which change the steric, electronic, and hydrophobic properties of TCN, while maintaining the integrity of the tricyclic ring system. These compounds were evaluated for activity against human immunodeficiency virus (HIV-1), herpes simplex virus type 1 (HSV-1), and human cytomegalovirus (HCMV) and were found to be either less active than TCN and TCN-P or inactive at the highest concentrations tested, 100 microM. We conclude that substitutions at the 2-position of triciribine adversely affect the antiviral activity most likely because these analogs are not phosphorylated to active metabolites.  相似文献   

15.
Based on general SARs previously described for anti-HIV-1 diarylsulfone derivatives, a series of 2-amino- and 2-carboxamido-3-arylsulfonylthiophenes has been prepared and evaluated as potential antiviral and antitumor agents. In cell culture, some of the 2-aminothiophenes exhibited moderate and selective activity against HIV-1, with 2-amino-3-(2-nitrophenylsulfonyl)thiophene (7e) being most attractive (EC(50)=3.8 microg/mL, CC(50)=>100 microg/mL). In broad-spectrum antiviral assays, the 3-arylsulfonyl-2-(trifluoroacetamido)thiophenes (8c-g) and 2-acetamido-3-arylsulfonyl-5-nitrothiophenes (9f-g) proved considerably active (IC(50)=0.1-10 microg/mL) against human cytomegalovirus (CMV) and/or varicella zoster virus (VZV). Based on the activity of the trifluoroacetamides, ring-modified furan, N-(substituted)pyrrole, phenyl, and 3,4-thiophene analogues were prepared, and these compounds were also active against CMV and/or VZV, with the notable exception of the 3,4-thiophene derivative. In contrast to other amines, the 2-aminopyrrole precursors (13a-d) also exhibited potent activity against CMV. Unfortunately, most of these compounds displayed significant cytotoxicity against human fibroblasts, the cells supporting CMV and VZV replication, and thus selectivity indices were low. The most notable exception to this was the naphthyl-substituted aminopyrrole 13d, which exhibited both potent (IC(50)=0.3 microg/mL) and selective (CC(50)=>50 microg/mL) activity against CMV. Finally, thiophene aryl amides 8i-k displayed moderate in vitro activity against certain leukemia, breast, and colon cancer cell lines.  相似文献   

16.
Abstract

Triciribine (TCN) and triciribine monophosphate (TCN-P) have antiviral and antineoplastic activity at low or submicromolar concentrations. In an effort to improve and better understand this activity, we have conducted a structure-activity relationship study to explore the effect of substitutions at the 2-position of triciribine. 2-Methyl-(2-Me-TCN), 2-ethyl-(2-Et-TCN), 2-phenyl-(2-Ph-TCN), 2-chloro-(2-Cl-TCN), and 2-aminotriciribine(2-NH2-TCN) were designed and synthesized to determine the effects of substitutions at the 2-position which change the steric, electronic, and hydrophobic properties of TCN, while maintaining the integrity of the tricyclic ring system. These compounds were evaluated for activity against human immunodeficiency virus (HIV-1), herpes simplex virus type 1 (HSV-1), and human cytomegalovirus (HCMV) and were found to be either less active than TCN and TCN-P or inactive at the highest concentrations tested, 100 µM. We conclude that substitutions at the 2-position of triciribine adversely affect the antiviral activity most likely because these analogs are not phosphorylated to active metabolites.  相似文献   

17.
This study presents the chemical composition and antiviral activity against herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) of sulfated galactan crude extracts and main fractions obtained from two red seaweeds collected in Brazil, Gymnogongrus griffithsiae and Cryptonemia crenulata. Most of the eighteen tested products, including homogeneous kappa/iota/nu carrageenan and DL-galactan hybrid, exhibited antiherpetic activity with inhibitory concentration 50% (IC50) values in the range 0.5-5.6 microg/ml, as determined in a virus plaque reduction assay in Vero cells. The galactans lacked cytotoxic effects and showed a broad spectrum of antiviral activity against HSV-1 and HSV-2. No direct virus inactivation was observed after virion treatment with the galactans. The mode of action of these compounds could be mainly ascribed to an inhibitory effect on virus adsorption. Most importantly, a significant protection against a murine vaginal infection with HSV-2 was afforded by topical treatment with the sulfated galactans.  相似文献   

18.
9-(2-磷酸甲氧乙基)-2,6-二氨基嘌呤(PMEDAP)是无环核苷酸类化合物,结构上与9-(2-磷酸甲氧乙基)腺嘌呤(PMEA)相似,具有更广更强的抗病毒活性,尽管其有一定的细胞毒性,在抗病毒感染及抗肿瘤等领域仍具有开发前景。本文概括了近20年来PMEDAP及其部分取代的衍生物在抗逆转录病毒(如艾滋病毒等)、肝炎病毒(如人和鸭乙肝病毒等)、疱疹病毒(如简单疱疹病毒1型和2型、人类疱疹病毒6、7、8型等)和其他动植物病毒(如香蕉条纹病毒、腺病毒等)活性的研究进展。PMEDAP在具有广谱抗病毒作用的同时,具有一定的细胞毒性,在抗肿瘤方面有很高的研究意义。本文综述了PMEDAP在抗肿瘤方面的研究进展及其可能的作用机制,并根据现有的构效研究对PMEDAP在抗病毒和抗肿瘤两个方向的进一步研究提出了展望。  相似文献   

19.
Genital herpes is a major risk factor in acquiring human immunodeficiency virus type-1 (HIV-1) infection and is caused by both Herpes Simplex virus type 1 (HSV-1) and HSV-2. The amphipathic peptide C5A, derived from the non-structural hepatitis C virus (HCV) protein 5A, was shown to prevent HIV-1 infection but neither influenza nor vesicular stomatitis virus infections. Here we investigated the antiviral function of C5A on HSV infections. C5A efficiently inhibited both HSV-1 and HSV-2 infection in epithelial cells in vitro as well as in an ex vivo epidermal infection model. C5A destabilized the integrity of the viral HSV membrane. Furthermore, drug resistant HSV strains were inhibited by this peptide. Notably, C5A-mediated neutralization of HSV-1 prevented HIV-1 transmission. An in vitro HIV-1 transmigration assay was developed using primary genital epithelial cells and HSV infection increased HIV-1 transmigration. Treatment with C5A abolished HIV-1 transmigration by preventing HSV infection and by preserving the integrity of the genital epithelium that was severely compromised by HSV infection. In conclusion, this study demonstrates that C5A represents a multipurpose microbicide candidate, which neutralizes both HIV-1 and HSV, and which may interfere with HIV-1 transmission through the genital epithelium.  相似文献   

20.
Novel vinyl branched apiosyl nucleosides were synthesized in this study. Apiosyl sugar moiety was constructed by sequential ozonolysis and reductions. The bases (uracil and thymine) were efficiently coupled by glycosyl condensation procedure (persilyated base and TMSOTf). The antiviral activities of the synthesized compounds were evaluated against the HIV-1, HSV-1, HSV-2, and HCMV. Compound 10beta displayed moderate anti-HIV activity (EC50 = 17.3 microg/mL) without exhibiting any cytotoxicity up to 100 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号