首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercially available cardiac pacemakers and implantable cardioverters/defibrillators (ICD) predominantly use the intracardiac derived electrocardiogram (ECG) for detection of arrhythmias. To achieve an automatic control of the heart frequency in accordance with cardiovascular strain and an improved detection of life-threatening arrhythmias, it is desirable to monitor the heart by an input signal correlated with the hemodynamic state. One possible approach to derive such a signal, is to measure the inotropy (mechanical contraction strength of the heart muscle). For this purpose an optoelectronic measurement system has been designed. The fundamental function of the system has been shown in earlier investigations using an isolated beating pig heart. In this paper further results showing the correlation of the fiberoptic sensor signal with the left ventricular stroke volume are presented. To make the system useful for implantable devices, further improvements with regard to power consumption and signal quality were achieved.  相似文献   

2.
3.
Commercially available cardiac pacemakers and implantable cardioverters/defibrillators (ICDs) predominantly use an intracardiac-derived electrocardiogram (ECG) for the detection of arrhythmias. To achieve automatic control of the heart frequency in accordance with cardiovascular strain and improved detection of life-threatening arrhythmias, it is desirable to monitor the heart by an input signal correlated with the hemodynamic state. One possible approach to derive such a signal is to measure the inotropy (mechanical contraction strength of the heart muscle). For this purpose, an optoelectronic measurement system has been designed. The fundamental function of the system has been shown in earlier investigations using an isolated beating pig heart. In this paper the design of two algorithms for use in pacemakers and ICDs based on a fiber optic sensor signal is presented.  相似文献   

4.
A commercially available magnetic therapy system, designed for clinical application as well as for private use without medical supervision, was examined with respect to its potential for causing electromagnetic interference with implantable pacemakers (PMs) and automatic implantable cardioverter defibrillators (AICDs). A sample of 15 PMs and 5 AICDs were experimentally investigated. Each of the implants was realistically positioned in a homogeneous, electrically passive torso phantom and exposed to the magnetic fields of the system's applicators (whole body mat, cushion, and bar applicator). The detection thresholds of the implants were programmed to maximum sensitivity and both unipolar as well as bipolar electrode configurations were considered. The evaluation of possible interferences was derived from the internal event storages and pacing statistics recorded by the implants during exposure. Any "heart activity" recorded by the implants during exposure was interpreted as a potential interference, because the implant obviously misinterpreted the external interference signal as a physiological signal. Only cases without any recorded "heart activity" and with nominal pacing rates (as expected from the program parameter settings) of the implants were rated as "interference-free." Exposure to the whole body mat (peak magnetic induction up to 265 microT) did not show an influence on PMs and AICD in any case. The cushion applicator at the highest field intensity (peak magnetic induction up to 360 microT) led to atrial sensing defects in four PM models with unipolar electrode configuration. Under bipolar electrode configuration no disturbances occurred. The bar applicator led to sensing problems and consecutively reduced pacing rates in all tested PM models under unipolar electrode configuration and maximum field intensity (peak magnetic induction up to 980 microT). Bipolar electrode configuration resolved the problem. The investigated AICDs did not show malfunctions under any investigated condition. In conclusion, the examined PEMF therapy system did not interfere with the investigated implantable cardiac devices with bipolar electrode configuration. However, unipolar electrode configuration in pacemakers seems to be potentially hazardous during application of the examined PEMF therapy system.  相似文献   

5.
The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems.  相似文献   

6.
Tibial forces are important because they determine polyethylene wear, stress distribution in the implant, and stress transfer to underlying bone. Theoretic estimates of tibiofemoral forces have varied between three and six times the body weight depending on the mathematical models used and the type of activity analyzed. An implantable telemetry system was therefore developed to directly measure tibiofemoral compressive forces. This system was tested in a cadaver knee in a dynamic knee rig. A total knee tibial arthroplasty prosthesis was instrumented with four force transducers located at the four corners of the tibial tray. These transducers measured the total compressive forces on the tibial tray and the location of the center of pressure. A microprocessor performed analog-to-digital signal conversion and performed pulse code modulation of a surface acoustic wave radio frequency oscillator. This signal was then transmitted through a single pin hermetic feed-through tantalum wire antenna located at the tip of the stem. The radio frequency signal was received by an external antenna connected to a receiver and to a computer for data acquisition. The prosthesis was powered by external coil induction. The tibial transducer accurately measured both the magnitude and the location of precisely applied external loads. Successful transmission of the radio frequency signal up to a range of 3m was achieved through cadaveric bone, bone cement, and soft tissue. Reasonable accuracy was obtained in measuring loads applied through a polyethylene insert. The implant was also able to detect unicondylar loading with liftoff.  相似文献   

7.
A J Woakes  P J Butler 《Biotelemetry》1975,2(3-4):153-160
An implantable telemetry transmitter is described for monitoring respiratory frequency and heart rate in animal physiological studies. The ECG is transmitted directly while the respiratory signal, derived from the temperature variation of the air in the respiratory tract, modulates the frequency of a subcarrier oscillator. A magnetic switch allows the implanted device to be switched on and off remotely. Details are given of the high packing density achieved by a modified cordwood method of construction. This system is being used to investigate the changes in heart rate and respiratory frequency associated with spontaneous diving in ducks, and typical results are presented.  相似文献   

8.
目的探索一种在无线遥测和刺激技术基础上的兔房颤模型的制作。方法新西兰兔皮下植入自主研发的植入式遥测刺激器,植入式遥测刺激器的制作是以TI公司(德州仪器)的MSP单片机和TI公司的RF无线收发芯片CC2250为核心开发设计。优化植入系统设计以满足新西兰兔房颤模型建立的探索实验;植入子植入新西兰兔腹部皮下,采集电极留置于左上肢和右上肢腋下皮下,两个刺激电极分别缝合于左心耳和左心房上,通过无线收发采集和刺激信号;实现利用Powerlab生理记录仪连续监测体表I导联心电信号,并通过专用计算机程序刺激软件,发放间歇(刺激2 s,暂停2 s)高频(频率20 Hz)阈上(强度2 mA,脉宽1 ms)刺激,若间歇期内出现房颤,则人为干预中止刺激,若转为窦性心律,则继续刺激。结果植入式遥测刺激器在体内可稳定工作(包括采集模拟心电信号和发放刺激)30 d,植入新西兰兔体内刺激3周后可诱导出房颤,持续时间〉48 h。结论用新西兰兔代替比格犬建立基于无线遥测和刺激基础上的房颤模型是完全可行的,同时也体现了动物福利优化和替代原则。  相似文献   

9.
There is an undisputed need for temperature-field reconstruction during minimally invasive cryosurgery. The current line of research focuses on developing miniature, wireless, implantable, temperature sensors to enable temperature-field reconstruction in real time. This project combines two parallel efforts: (i) to develop the hardware necessary for implantable sensors, and (ii) to develop mathematical techniques for temperature-field reconstruction in real time—the subject matter of the current study. In particular, this study proposes an approach for temperature-field reconstruction combining data obtained from medical imaging, cryoprobe-embedded sensors, and miniature, wireless, implantable sensors, the development of which is currently underway. This study discusses possible strategies for laying out implantable sensors and approaches for data integration. In particular, prostate cryosurgery is presented as a developmental model and a two-dimensional proof-of-concept is discussed. It is demonstrated that the lethal temperature can be predicted to a significant degree of certainty with implantable sensors and the technique proposed in the current study, a capability that is yet unavailable.  相似文献   

10.
《Cryobiology》2013,66(3):270-277
There is an undisputed need for temperature-field reconstruction during minimally invasive cryosurgery. The current line of research focuses on developing miniature, wireless, implantable, temperature sensors to enable temperature-field reconstruction in real time. This project combines two parallel efforts: (i) to develop the hardware necessary for implantable sensors, and (ii) to develop mathematical techniques for temperature-field reconstruction in real time—the subject matter of the current study. In particular, this study proposes an approach for temperature-field reconstruction combining data obtained from medical imaging, cryoprobe-embedded sensors, and miniature, wireless, implantable sensors, the development of which is currently underway. This study discusses possible strategies for laying out implantable sensors and approaches for data integration. In particular, prostate cryosurgery is presented as a developmental model and a two-dimensional proof-of-concept is discussed. It is demonstrated that the lethal temperature can be predicted to a significant degree of certainty with implantable sensors and the technique proposed in the current study, a capability that is yet unavailable.  相似文献   

11.
A sensing system for continuous recording of bladder volume is described. The system is intended for use in particular in patients with paraplegia or bladder plastique. Owing to the very simple measuring procedure employed the implantable components can be designed for very low power consumption. Also, there is no need for an additional data transfer from inside the body to the exterior, because measurement and telemetry are physically the same procedures.  相似文献   

12.
There are two implanted heart failure warning systems incorporated into biventricular pacemakers/automatic implantable cardiac defibrillators and tested in clinical trials: right heart pressures, and lung conductance measurements. However, both warning systems postdate measures of the earliest indicator of impending heart failure: left ventricular (LV) volume. There are currently no proposed implanted technologies that can perform LV blood volume measurements in humans. We propose to solve this problem by incorporating an admittance measurement system onto currently deployed biventricular and automatic implantable cardiac defibrillator leads. This study will demonstrate that an admittance measurement system can detect LV blood conductance from the epicardial position, despite the current generating and sensing electrodes being in constant motion with the heart, and with dynamic removal of the myocardial component of the returning voltage signal. Specifically, in 11 pigs, it will be demonstrated that 1) a physiological LV blood conductance signal can be derived; 2) LV dilation in response to dose-response intravenous neosynephrine can be detected by blood conductance in a similar fashion to the standard of endocardial crystals when admittance is used, but not when only traditional conductance is used; 3) the physiological impact of acute left anterior descending coronary artery occlusion and resultant LV dilation can be detected by blood conductance, before the anticipated secondary rise in right ventricular systolic pressure; and 4) a pleural effusion simulated by placing saline outside the pericardium does not serve as a source of artifact for blood conductance measurements.  相似文献   

13.
Reduced sizes of implantable cardiac pacemakers and clinical advances have led to a higher feasibility of using such devices in younger patients including children. Increased structural demands deriving from reduced device size and more active recipients require detailed knowledge of in vivo mechanical conditions to ensure device reliability. Objective of this study was the proof of feasibility of a system for the measurement of in vivo mechanical loadings on pacemaker implants. The system comprised the following: implantable instrumented pacemaker (IPM) with six force sensors, accelerometer and radio-frequency (RF) transceiver; RF data logging system and video capture system. Three Chacma baboons (20.6±1.15 kg) received one pectoral sub-muscular IPM implant. After wound healing, forces were measured during physical activities. Forces during range of motion of the arm were assessed on the anaesthetized animals prior to device explantation. Mass, volume and dimensions of the excised Pectoralis major muscles were determined after device explantation. Remote IPM activation and data acquisition were reliable in the indoor cage environment with transceiver distances of up to 3 m. Sampling rates of up to 1000 Hz proved sufficient to capture dynamic in vivo loadings. Compressive forces on the IPM in conscious animals reached a maximum of 77.2±54.6 N during physical activity and were 22.2±7.3 N at rest, compared with 34.6±15.7 N maximum during range of motion and 13.4±3.3 N at rest in anaesthetized animals. The study demonstrated the feasibility of the developed system for the assessment of in vivo mechanical loading conditions of implantable pacemakers with potential for use for other implantable therapeutic devices.  相似文献   

14.
Using Bluetooth wireless technology, we developed an implantable telemetry system for measurement of the left ventricular pressure-volume relation in conscious, freely moving rats. The telemetry system consisted of a pressure-conductance catheter (1.8-Fr) connected to a small (14-g) fully implantable signal transmitter. To make the system fully telemetric, calibrations such as blood resistivity and parallel conductance were also conducted telemetrically. To estimate blood resistivity, we used four electrodes arranged 0.2 mm apart on the pressure-conductance catheter. To estimate parallel conductance, we used a dual-frequency method. We examined the accuracy of calibrations, stroke volume (SV) measurements, and the reproducibility of the telemetry. The blood resistivity estimated telemetrically agreed with that measured using an ex vivo cuvette method (y=1.09x - 11.9, r2= 0.88, n=10). Parallel conductance estimated by the dual-frequency (2 and 20 kHz) method correlated well with that measured by a conventional saline injection method (y=1.59x - 1.77, r2= 0.87, n=13). The telemetric SV closely correlated with the flowmetric SV during inferior vena cava occlusions (y=0.96x + 7.5, r2=0.96, n=4). In six conscious rats, differences between the repeated telemetries on different days (3 days apart on average) were reasonably small: 13% for end-diastolic volume, 20% for end-systolic volume, 28% for end-diastolic pressure, and 6% for end-systolic pressure. We conclude that the developed telemetry system enables us to estimate the pressure-volume relation with reasonable accuracy and reproducibility in conscious, untethered rats.  相似文献   

15.
Laser Doppler flowmetry (LDF) signal responses have been compared with metabolic changes using both a surface macroprobe and randomly placed implantable microprobes in muscles of the constant-flow-perfused rat hindlimb. Changes in response to total flow and to vasoconstrictors that are known to increase (norepinephrine, NE) or decrease (serotonin, 5-HT) hindlimb oxygen uptake were assessed. The surface macroprobe (anterior end of biceps femoris) identified only one type of LDF response characterized by increased signal in response to NE and decreased signal in response to 5-HT. Implanted microprobes (tibialis, gastrocnemius, vastus, or bicep femoris) identified sites that gave three LDF responses of differing character. These responses were where the LDF signal increased with NE and decreased with 5-HT (56.7%), where the LDF signal decreased with NE and increased with 5-HT (16.5%), or where there was no net response to either vasoconstrictor (24.7%). The data are consistent with discrete regions of nutritive and nonnutritive flow in muscle where flow in each as controlled by vasoconstrictors relates directly to the metabolic behavior of the tissue.  相似文献   

16.
The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain– machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than . We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA) implementation of this portion is consequently energy efficient. We validate the performance of our overall system by decoding electrophysiologic data from a behaving rodent.  相似文献   

17.
BACKGROUND: Totally implantable venous access devices are widely used for infusion of chemotherapy or parenteral nutrition. Device associated complications include technical operative problems, infections, paravasal infusions and catheter or punction chamber dislocation. CASE PRESENTATION: We present the case of a 49-year-old patient with the rare complication of a intrapulmonal catheter dislocation of a totally implantable venous access system. Treosulfane for chemotherapy of metastatic breast cancer was infused via the catheter causing instant coughing and dyspnoea which lead to the diagnosis of catheter dislocation. The intrapulmonal part of the catheter was removed under thoracoscopic control without further complications. CONCLUSION: Intrapulmonal catheter dislocation is a rare complication of a totally implantable venous access device which can not be avoided by any prophylactic measures. Therefore, the infusion system should be tested before each use and each new symptom, even when not obviously related to the catheter should be carefully documented and evaluated by expert physicians to avoid severe catheter-associated complications.  相似文献   

18.
From a clinical point of view, an implantable telemetric probe for monitoring the blood glucose profile is highly desirable. It should be capable of monitoring the blood glucose level continuously or at regular brief intervals, if necessary requirement-controlled. Apart from blood, measurement can also be made in intercellular tissue fluid, for example, in subcutaneous connective and fatty tissue, because this fluid accurately reflects blood glucose levels after only a brief, but negligible, time lag. Since the functional lifespan of an implantable probe is of decisive importance, only physical sensors, but not bio-sensors can be considered. We are in the process of developing a very sensitive miniaturised detector based on polarimetry, capable of determining the measuring parameter--the spatial orientation of the in-plane vibration of a polarised light beam--with extreme accuracy. This is a very important point, since the physiological and pathological glucose levels modify the in-plane vibration by only a very tiny angle of rotation. The high level of accuracy is achieved by various specific optical amplification mechanisms, and amplification of the electric signal. Two purely optical amplification methods are described here. Simple linear elongation of the optical path of a laser beam within the sample, resulting in a proportional amplification of the measuring signal, is obviously strictly limited in an implantable probe. We therefore developed a technique that preserves the polarisation state of the light beam during reflection. This technique makes possible multiple passage of the light beam through the fluid being sensed, thus elongating the optical path by "folding" the light beam without the need to enlarge the measuring cuvette. In a second possibility, enlargement of the rotation angle can be achieved by reflecting the light beam from a suitable surface, when the orthogonal components of the polarised light beam are reflected to different extents.  相似文献   

19.
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.  相似文献   

20.
Preliminary data indicate the potential utility of an implantable subcutaneous device that facilitates chronic intravenous infusion of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction. GnRH distribution curves were congruent in control monkeys and those with implanted devices. Tissue tolerance was good in this brief trial. These findings suggest that use of this or a similar implantable device be considered for chronic GnRH administration in human pulse therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号