首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A recA deletion mutant of Mycobacterium smegmatis has been isolated by homologous recombination using a sacB counterselection strategy. Deletion of the recA gene from the chromosome was demonstrated by Southern hybridizations and by polymerase chain reaction (PCR). Western analysis using anti-RecA antibodies confirmed that the RecA protein was not made by the mutant strain. The recA deletion strain exhibited enhanced sensitivity to UV irradiation and failed to undergo homologous recombination. The results obtained from the recombination assays suggest that in wild-type M. smegmatis the majority of colonies arise from single cross-over homologous recombination events with only a very minor contribution from random integrations. The deficiencies in UV survival and recombination were complemented by introduction of the cloned M. smegmatis recA gene. Overexpression of RecA was found to be toxic in the absence of recX , which is found downstream of and co-transcribed with recA and is thus also affected by the deletion of recA . The M. smegmatis recA deletion strain was also complemented by the M. tuberculosis recA gene with or without its intein; most importantly, the frequency of double cross-over homologous recombination events was identical regardless of whether the M. tuberculosis recA gene contained or lacked the intein. Thus, the low frequency of homologous recombination observed in M. tuberculosis is not due to the presence of an intein-coding sequence in its recA gene per se .  相似文献   

4.
5.
A Marais  J M Bove    J Renaudin 《Journal of bacteriology》1996,178(23):7003-7009
In previous studies (A. Marais, J. M. Bove, and J. Renaudin, J. Bacteriol. 178:862-870, 1996), we have shown that the recA gene of Spiroplasma citri R8A2 was restricted to the first 390 nucleotides of the N-terminal part. PCR amplification and sequencing studies of five additional strains of S. citri have revealed that these strains had the same organization at the recA region as the R8A2 strain. In contrast to S. citri, Spiroplasma melliferum was found to contain a full-length recA gene. However, in all five S. melliferum strains tested, a TAA stop codon was found within the N-terminal region of the recA reading frame. Our results suggest that S. melliferum, as well as S. citri, is RecA deficient. In agreement with the recA mutant genotype of S. citri and S. melliferum, we have shown that these organisms are highly sensitive to UV irradiation.  相似文献   

6.
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.  相似文献   

7.
We have previously described the use of the replicative form (RF) of Spiroplasma citri virus SpV1 as a vector for expressing an epitope of the P1 adhesin protein from Mycoplasma pneumoniae in S. citri (A. Marais, J. M. Bové, S.F. Dallo, J. B. Baseman, and J. Renaudin, J. Bacteriol. 175:2783-2787, 1993). We have now studied the structural instability of the recombinant RF leading to loss of the DNA insert. Analyses of viral clones with deletions have shown that both illegitimate and homologous recombination were involved in deletion formation. For one such clone, deletion has occurred via a double crossing-over exchange between the circular free viral RF and SpV1 viral sequences present in the S. citri host chromosome. The homologous recombination process usually requires the RecA protein. However, characterization of the recA gene of the S. citri R8A2 host strain revealed that over two-thirds of the open reading frame of the recA gene was deleted from the C-terminal part, indicating that this particular strain is probably RecA deficient.  相似文献   

8.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

9.
Functions of the Borrelia burgdorferi RecA protein were investigated in Escherichia coli recA null mutants. Complementation with B. burgdorferi recA increased survival of E. coli recA mutants by 3 orders of magnitude at a UV dose of 2,000 microJ/cm(2). The viability at this UV dose was about 10% that provided by the homologous recA gene. Expression of B. burgdorferi recA resulted in survival of E. coli at levels of mitomycin C that were lethal to noncomplemented hosts. B. burgdorferi RecA was as effective as E. coli RecA in mediating homologous recombination in E. coli. Furthermore, E. coli lambda phage lysogens complemented with B. burgdorferi recA produced phage even in the absence of UV irradiation. The level of phage induction was 55-fold higher than the level in cells complemented with the homologous recA gene, suggesting that B. burgdorferi RecA may possess an enhanced coprotease activity. This study indicates that B. burgdorferi RecA mediates the same functions in E. coli as the homologous E. coli protein mediates. However, the rapid loss of viability and the absence of induction in recA expression after UV irradiation in B. burgdorferi suggest that recA is not involved in the repair of UV-induced damage in B. burgdorferi. The primary role of RecA in B. burgdorferi is likely to be a role in some aspect of recombination.  相似文献   

10.
In the pathogen Neisseria gonorrhoeae (Gc), the RecA protein is necessary for DNA repair, DNA transformation and pilus antigenic variation. Many bacteria contain a gene, recX, which has been suggested to downregulate recA through an unknown mechanism. To investigate the possible role of recX in Gc, we cloned and insertionally inactivated the recX gene. The recX loss-of-function mutant showed decreases in pilus phase variation, DNA transformation and DNA repair ability compared with wild type. We were able to complement all these deficiencies by supplying a functional copy of recX elsewhere in the chromosome. The recX mutant still showed increases in pilus phase variation under conditions of iron starvation, and the recX mutant showed levels of RecA protein equivalent to wild type. Although the precise role of recX in recombination remains unclear, RecX aids all RecA-related processes in Gc, and this is the first demonstration of a role for recX in homologous recombination in any organism.  相似文献   

11.
Abstract The recA gene of Chlamydia trachomatis was isolated by complementation of an Escherichia coli recA mutant. The cloned gene restored resistance to methyl methanesulfonate in E. coli recA mutants. The DNA sequence of the chlamydial gene was determined and the deduced protein sequence compared with other RecA proteins. In E. coli recA deletion mutants, the cloned gene conferred moderate recombinational activity as assayed by Hfr matings. The chlamydial recA gene was efficient in repairing alkylated DNA but less so in repairing of UV damage when compared with the E. coli homologue. As detected by an SOS gene fusion, a small but measurable amount of LexA co-cleavage was indicated.  相似文献   

12.
A recombinant plasmid carrying the recA gene of Vibrio cholerae was isolated from a V. cholerae genomic library, using complementation in Escherichia coli. The plasmid complements a recA mutation in E. coli for both resistance to the DNA-damaging agent methyl methanesulfonate and recombinational activity in bacteriophage P1 transductions. After determining the approximate location of the recA gene on the cloned DNA fragment, we constructed a defined recA mutation by filling in an XbaI site located within the gene. The 4-base pair insertion resulted in a truncated RecA protein as determined by minicell analysis. The mutation was spontaneously recombined onto the chromosome of a derivative of V. cholerae strain P27459 by screening for methyl methanesulfonate-sensitive variants. Southern blot analysis confirmed the presence of the inactivated XbaI site in the chromosome of DNA isolated from one of these methyl methanesulfonate-sensitive colonies. The recA V. cholerae strain was considerably more sensitive to UV light than its parent, was impaired in homologous recombination, and was deficient in induction of a temperate vibriophage upon exposure to UV light. We conclude that the V. cholerae RecA protein has activities which are analogous to those described for the RecA protein of E. coli.  相似文献   

13.
The recA gene has been isolated from Rickettsia prowazekii, an obligate intracellular bacterium. Comparison of the amino acid sequence of R. prowazekii RecA with that of Escherichia coli RecA revealed that 62% of the residues were identical. The highest identity was found with RecA of Legionella pneumophila, in which 69% of the residues were identical. Amino acid residues of E. coli RecA associated with functional activities are conserved in rickettsial RecA, and the R. prowazekii recA gene complements E. coli recA mutants for UV light and methyl methanesulfonate sensitivities as well as recombinational deficiencies. The characterized region upstream of rickettsial recA did not contain a sequence homologous to an E. coli LexA binding site (SOS box), suggesting differences in the regulation of the R. prowazekii recA gene.  相似文献   

14.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

15.
The recA gene of Synechococcus sp. strain PCC 7002 was detected and cloned from a lambda gtwes genomic library by heterologous hybridization by using a gene-internal fragment of the Escherichia coli recA gene as the probe. The gene encodes a 38-kilodalton polypeptide which is antigenically related to the RecA protein of E. coli. The nucleotide sequence of a portion of the gene was determined. The translation of this region was 55% homologous to the E. coli protein; allowances for conservative amino acid replacements yield a homology value of about 74%. The cyanobacterial recA gene product was proficient in restoring homologous recombination and partial resistance to UV irradiation to recA mutants of E. coli. Heterologous hybridization experiments, in which the Synechococcus sp. strain PCC 7002 recA gene was used as the probe, indicate that a homologous gene is probably present in all cyanobacterial strains.  相似文献   

16.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

17.
18.
19.
A recombinant plasmid carrying the recA gene of Aeromonas caviae was isolated from an A. caviae genomic library by complementation of an Escherichia coli recA mutant. The plasmid restored resistance to both UV irradiation and to the DNA-damaging agent methyl methanesulfonate in the E. coli recA mutant strain. The cloned gene also restored recombination proficiency as measured by the formation of lac+ recombinants from duplicated mutant lacZ genes and by the ability to propagate a strain of phage lambda (red gam) that requires host recombination functions for growth. The approximate location of the recA gene on the cloned DNA fragment was determined by constructing deletions and by the insertion of Tn5, both of which abolished the ability of the recombinant plasmid to complement the E. coli recA strains. A. caviae recA::Tn5 was introduced into A. caviae by P1 transduction. The resulting A. caviae recA mutant strain was considerably more sensitive to UV light than was its parent. Southern hybridization analysis indicated that the A. caviae recA gene has diverged from the recA genes from a variety of gram-negative bacteria, including A. hydrophila and A. sobria. Maxicell labeling experiments revealed that the RecA protein of A. caviae had an Mr of about 39,400.  相似文献   

20.
Mycoplasmas are wall-less prokaryotes phylogenetically related to gram-positive bacteria. In order to investigate DNA recombination in these organisms, we have cloned the recA gene from the mycoplasma Acholeplasma laidlawii. DNA sequence data indicate extensive homology between the A. laidlawii recA gene and recA genes from other bacteria, particularly Bacillus subtilis. The recA sequences from three A. laidlawii strains (strains JA1, K2, and 8195) were compared, and surprisingly, the gene from A. laidlawii 8195 was found to contain a nonsense mutation that results in truncation of 36 amino acids from the carboxyl terminus of the RecA protein. By using sensitivity to UV irradiation as a measure of DNA repair, strain 8195 had an apparent RecA- phenotype. When carried on a multicopy plasmid, the wild-type A. laidlawii recA gene was detrimental to growth of Escherichia coli, perhaps because of improper regulation of the RecA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号