首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(1-2):85-92
Experiments with model membranes, in which ubiquinone was incorporated, were performed in order to clarify the mechanism by which ubiquinone can prevent or control chain lipid peroxidation in biomembranes.

Comparing the behaviour of ubiquinone-containing vesicles with β-carotene containing vesicles we suggest that a possible explanation of the ubiquinone antioxidant effect could be to scavenge singlet oxygen and to affect structurally the lipid bilayer inhibiting hydroperoxide decomposition.  相似文献   

2.
We investigated the antioxidant activity of supramolecular water-soluble fullerenes, polyvinylpyrrolidone (PVP)-entrapped C60, and γ-cyclodextrin (CD)-bicapped C60, based on comparable β-carotene bleaching assay. Antioxidant activity against reactive oxygen species (ROS) generated by three different methods, (i) autoxidation of linoleic acid, (ii) hydrogen peroxide promoter, and (iii) photoirradiation, was evaluated as percent of inhibition relative to a control experiment in view of the bleaching rate constant (k obs) as well as the persistent absorbancy of β-carotene. Water-soluble fullerenes exhibit significant inhibitory effects on the oxidative discoloration of β-carotene in any system.  相似文献   

3.
β-arrestins, including β-arrestin1 and β-arrestin2, are ubiquitous cytosolic proteins which localize in the cytoplasm and plasma membrane, initially be regarded as an potential character in G protein-coupled receptors (GPCR) desensitization, sequestration, and internalization. Besides, recent many studies increasingly revealed that β-arrestins served widely as versatile adapter proteins for scaffolding many intracellular signaling networks to modulate the strength and duration of signaling by diverse types of receptors and downstream kinases. As we known, the biologic and clinical behaviors of many tumors are largely determined by multiple molecular signal pathways. More recently, accumulating evidences established that β-arrestins got widely involved in many cancer developmental signaling events which responsible for tumor viability and metastasis, suggesting an impressive role of β-arrestins in tumor progression. Because of the regulation and biological output of β-arrestins is so complex, the role of β-arrestins in cancer development still remains enigmatic. However, the further understanding with the clinical prognosis and oncogenic potential of β-arrestins might facilitate the identification of diagnosis biomarkers and development of drug targets in cancer. In this article, we reviewed a comprehensive summary of the β-arrestins-mediated functions in human cancers.  相似文献   

4.
5.
Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative β-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum. In this work, we extended our study to three GmBCHs to examine their possible role(s) in nodule development, as they were additionally identified as nodule specific, along with the completion of the soybean genome. In situ hybridization revealed the expression of three GmBCHs (GmBCH1, GmBCH2, and GmBCH3) in the infected cells of root nodules, and their enzymatic activities were confirmed by functional assays in Escherichia coli. Localization of GmBCHs by transfecting Arabidopsis (Arabidopsis thaliana) protoplasts with green fluorescent protein fusions and by electron microscopic immunogold detection in soybean nodules indicated that GmBCH2 and GmBCH3 were present in plastids, while GmBCH1 appeared to be cytosolic. RNA interference of the GmBCHs severely impaired nitrogen fixation as well as nodule development. Surprisingly, we failed to detect zeaxanthin, a product of GmBCH, or any other carotenoids in nodules. Therefore, we examined the possibility that most of the carotenoids in nodules are converted or cleaved to other compounds. We detected the expression of some carotenoid cleavage dioxygenases (GmCCDs) in wild-type nodules and also a reduced amount of zeaxanthin in GmCCD8-expressing E. coli, suggesting cleavage of the carotenoid. In view of these findings, we propose that carotenoids such as zeaxanthin synthesized in root nodules are cleaved by GmCCDs, and we discuss the possible roles of the carotenoid cleavage products in nodulation.Legume-Rhizobium spp. symbiosis results in the formation of the root nodule, in which rhizobia fix atmospheric nitrogen. Nodule development requires diverse events, such as Nod factor synthesis in the rhizobia, perception of the Nod factor on plant roots by receptor-like kinases, endocytosis of rhizobia into plant cells, and so on (Stacey et al., 2006; Oldroyd et al., 2011; Singh and Parniske, 2012). Sequential expression of numerous plant genes occurs during nodulation, contributing to different stages including nitrogen fixation. Arbuscular mycorrhizal (AM) symbiosis exhibits many similarities to the nodulation process (Oldroyd et al., 2009). For example, SymRK, the receptor-like kinase gene, is required for both rhizobial and AM symbioses (Stracke et al., 2002). Similarly, the signal transduction pathways following perception are also in part the same, and the genes common to the two pathways have been referred to as the common symbiosis (SYM) genes (Kistner et al., 2005). These similarities may reflect common mechanisms for host plant cells to respond to symbionts, although the commonality is not globally defined yet.Plant carotenoids are mostly C40 tetraterpenoid pigments with a series of double bonds (DellaPenna and Pogson, 2006; Lu and Li, 2008). They play essential roles in photosynthesis. The phytohormone abscisic acid (ABA) is synthesized from xanthophylls, oxygenated derivatives of carotenoids. The beneficial effects of carotenoids for human disease prevention and health promotion are well established and are based on their antioxidant activities (Kopsell and Kopsell, 2006; Rao and Rao, 2007; von Lintig, 2010). Metabolic engineering approaches have produced crop plants with enhanced carotenoid contents and improved nutritional value (Giuliano et al., 2008). For example, enhancement of β-carotene, provitamin A, by engineering the carotenoid biosynthetic pathway resulted in the development of cv Golden rice (Oryza sativa; Ye et al., 2000; Paine et al., 2005; Ha et al., 2010).The initial step of carotenoid biosynthesis is the production of phytoene by the enzyme phytoene synthase (Fig. 1; DellaPenna and Pogson, 2006; Cazzonelli and Pogson, 2010). The subsequent activities of desaturases, isomerase, and cyclase convert phytoene into lycopene and further into β-carotene. Xanthophyll synthesis begins with the action of β-carotene hydroxylase (BCH) on β-carotene, producing initially β-cryptoxanthin and thereafter zeaxanthin (Kim et al., 2009). Overexpression of BCH has been found to confer tolerance to light stress (Davison et al., 2002). The subsequent steps catalyzed by zeaxanthin epoxidase (ZEP) and neoxanthin synthase lead to the synthesis of ABA (Takaichi and Mimuro, 1998).Open in a separate windowFigure 1.The biosynthetic pathway of carotenoids in plants. GGPP, Geranylgeranyl diphosphate; PSY, phytoene synthase; PDS, phytoene desaturase; ZDS, ζ-carotene desaturase; CRTISO, carotene isomerase; LCYB, lycopene β-cyclase; CYP97A3 and CYP97C1, cytochrome P450 enzymes; NSY, neoxanthin synthase; LCYE, lycopene ε-cyclase; CRTR-E, ε-carotene hydroxylase. Enzymes in red were examined in this study.Various carotenoid cleavage dioxygenases (CCDs) catalyze the formation of apocarotenoids with functions as hormones, flavors, and pigments (Auldridge et al., 2006b; Strack and Fester, 2006; Tsuchiya and McCourt, 2009; Walter et al., 2010). Recently, CCD7 and CCD8 were shown to control the synthesis of strigolactones, newly discovered hormones that inhibit shoot branching (Gomez-Roldan et al., 2008; Umehara et al., 2008; Vogel et al., 2010; Ruyter-Spira et al., 2013). In addition, carotenoid cleavage products have been discovered in plant roots colonized by AM fungi (Strack and Fester, 2006). During AM symbiosis, roots synthesize apocarotenoids at the same time as activating plant genes for carotenoid metabolism. Although RNA interference (RNAi)-mediated inhibition of apocarotenoid synthesis suggests that apocarotenoids are functionally significant (Snowden et al., 2005; Floss et al., 2008), their role in AM symbiosis is unknown.In a search for genes differentially induced during soybean (Glycine max)-Rhizobium spp. symbiosis, several antioxidant genes, including a gene encoding a putative BCH, were identified. In this report, we describe genes (GmBCHs) encoding a putative BCH whose expression increased in soybean root nodules. Therefore, the biochemical activities of BCHs were investigated. RNAi inhibition of GmBCH expression interfered with nitrogen fixation as well as nodule development. Subsequent analysis of the expression and biochemical activities of GmCCDs in root nodules led us to hypothesize that GmCCD8 could be involved in the synthesis of apocarotenoids from zeaxanthin in these nodules.  相似文献   

6.
Encapsulation technologies using proteins or polysaccharides can be employed with the purpose of solubilizing and protecting carotenoids. However, information on the role of protein and polysaccharide interactions is still slightly limited. The aim of this work was to investigate the effect of β-carotene linked to protein β-lactoglobulin (BLG) in the interaction carboxymethylcellulose (CMC) using isothermal titration calorimetry (ITC). Firstly, BLG and CMC interaction was assessed by means of turbidity analysis. Based on the results of turbidity, the thermodynamic profile of BLG-CMC complexes at pH 4.0 was obtained using ITC analysis at 25 °C. Afterward, it was evaluated the effect of a thermal treatment applied to the BLG (68 °C for 50 min) in the interaction with CMC also using ITC and circular dichroism (CD). ITC and CD analysis showed that the heat treatment applied on BLG did not cause changes in molecular interactions. The binding isotherm of BLG-CMC complexes incorporated with β-carotene showed an increase in the molar ratio and a slight decrease in enthalpy of the system. Incorporation of β-carotene in the system did not significantly affect the BLG and CMC interaction, suggesting this system can be applied in food application as encapsulation.  相似文献   

7.
Cell suspension cultures of Capsicum frutescens accumulated digoxin, purpureaglycoside A and other unknown derivatives when digitoxin, a cardiac glycoside, was used as a precursor. The feeding of digitoxin complexed with &#103 -cyclodextrin increased the accumulation of digoxin, purpureaglycoside A and other unknown derivatives. Control cultures (without digitoxin) did not produce any of these metabolites. The growth of cells was affected by both digitoxin as well as digitoxin- &#103 -cyclodextrin. The accumulation of purpureaglycoside A and digoxin reached a maximum of 1241 and 374 &#119 g 100 ml &#109 1 culture on the 6th and 2nd day, respectively, which was 3.9 and 4.5 fold higher than cultures treated with digitoxin alone (sampled on the 13th day). The other unknown derivatives formed in digitoxin- &#103 -cyclodextrin fed cultures were 15 times higher than digitoxin alone fed C. frutescens cultures. The addition of glucose to digitoxin- &#103 -cyclodextrin treated cultures increased the accumulation of purpureaglycoside A which reached a maximum of 3589 &#119 g 100 ml &#109 1 culture after 12 h incubation, which was a 2.9 fold increase over cultures treated with digitoxin- &#103 -cyclodextrin alone.  相似文献   

8.
Chiral β-amino acids occur as constituents of various natural and synthetic compounds with potentially useful bioactivities. The pyridoxal 5'-phosphate (PLP)-dependent S-selective transaminase from Mesorhizobium sp. strain LUK (MesAT) is a fold type I aminotransferase that can be used for the preparation of enantiopure β-Phe and derivatives thereof. Using x-ray crystallography, we solved structures of MesAT in complex with (S)-β-Phe, (R)-3-amino-5-methylhexanoic acid, 2-oxoglutarate, and the inhibitor 2-aminooxyacetic acid, which allowed us to unveil the molecular basis of the amino acid specificity and enantioselectivity of this enzyme. The binding pocket of the side chain of a β-amino acid is located on the 3'-oxygen side of the PLP cofactor. The same binding pocket is utilized by MesAT to bind the α-carboxylate group of an α-amino acid. A β-amino acid thus binds in a reverse orientation in the active site of MesAT compared with an α-amino acid. Such a binding mode has not been reported before for any PLP-dependent aminotransferase and shows that the active site of MesAT has specifically evolved to accommodate both β- and α-amino acids.  相似文献   

9.
Both β-catenin and NF-κB have been implicated in our laboratory as candidate factors in driving proliferation in an in vivo model of Citrobacter rodentium (CR)-induced colonic crypt hyper-proliferation and hyperplasia. Herein, we test the hypothesis that β-catenin and not necessarily NF-κB regulates colonic crypt hyperplasia or tumorigenesis in response to CR infection. When C57Bl/6 wild type (WT) mice were infected with CR, sequential increases in proliferation at days 9 and 12 plateaued off at day 19 and paralleled increases in NF-κB signaling. In Tlr4−/− (KO) mice, a sequential but sustained proliferation which tapered off only marginally at day 19, was associated with TLR4-dependent and independent increases in NF-κB signaling. Similarly, increases in either activated or total β-catenin in the colonic crypts of WT mice as early as day 3 post-infection coincided with cyclinD1 and c-myc expression and associated crypt hyperplasia. In KO mice, a delayed kinetics associated predominantly with increases in non-phosphorylated (active) β-catenin coincided with increases in cyclinD1, c-myc and crypt hyperplasia. Interestingly, PKCζ-catalyzed Ser-9 phosphorylation and inactivation of GSK-3β and not loss of wild type APC protein accounted for β-catenin accumulation and nuclear translocation in either strain. In vitro studies with Wnt2b and Wnt5a further validated the interplay between the Wnt/β-catenin and NF-κB pathways, respectively. When WT or KO mice were treated with nanoparticle-encapsulated siRNA to β-catenin (si- β-Cat), almost complete loss of nuclear β-catenin coincided with concomitant decreases in CD44 and crypt hyperplasia without defects in NF-κB signaling. si-β-Cat treatment to Apc Min/+ mice attenuated CR-induced increases in β-catenin and CD44 that halted the growth of mutated crypts without affecting NF-κB signaling. The predominant β-catenin-induced crypt proliferation was further validated in a Castaneus strain (B6.CAST.11M) that exhibited significant crypt hyperplasia despite an attenuated NF-κB signaling. Thus, β-catenin and not necessarily NF-κB regulates crypt hyperplasia in response to bacterial infection.  相似文献   

10.
The special chemical and biological features of beta-peptides have been investigated intensively during recent years. Many studies emphasize the restricted biodegradability and the high metabolic stability of this class of compounds. beta-Peptidyl aminopeptidases form the first family of enzymes that hydrolyze a variety of short beta-peptides and beta-amino-acid-containing peptides. All representatives of this family were isolated from Gram-negative bacteria. The substrate specificities of the peptidases vary greatly, but the enzymes have common structural properties, and a similar reaction mechanism can be expected. This review gives an overview on the beta-peptidyl aminopeptidases with emphasis on their biochemical and structural properties. Their possible physiological function is discussed. Functionally and structurally related enzymes are compared to the beta-peptidyl aminopeptidases.  相似文献   

11.
The food-grade yeast Candida utilis has been engineered to confer a novel biosynthetic pathway for the production of carotenoids such as lycopene, β-carotene, and astaxanthin. The exogenous carotenoid biosynthesis genes were derived from the epiphytic bacterium Erwinia uredovora and the marine bacterium Agrobacterium aurantiacum. The carotenoid biosynthesis genes were individually modified based on the codon usage of the C. utilis glyceraldehyde 3-phosphate dehydrogenase gene and expressed in C. utilis under the control of the constitutive promoters and terminators derived from C. utilis. The resultant yeast strains accumulated lycopene, β-carotene, and astaxanthin in the cells at 1.1, 0.4, and 0.4 mg per g (dry weight) of cells, respectively. This was considered to be a result of the carbon flow into ergosterol biosynthesis being partially redirected to the nonendogenous pathway for carotenoid production.Carotenoids are yellow, orange, and red pigments which are widely distributed in nature (3). Industrially, carotenoid pigments such as β-carotene are utilized as food or feed supplements. β-Carotene is also a precursor of vitamin A in mammals (11). Recently, carotenoids have attracted greater attention, due to their beneficial effect on human health: e.g., the functions of lycopene and astaxanthin include strong quenching of singlet oxygen (12), involvement in cancer prevention (2), and enhancement of immune responses (6). Astaxanthin has also been exploited for industrial use, principally as an agent for pigmenting cultured fish and shellfish.The genes responsible for the synthesis of carotenoids such as lycopene, β-carotene, and astaxanthin have been isolated from the epiphytic Erwinia species or the marine bacteria Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1, and their functions have been elucidated (13, 14). The first substrate of the encoded enzymes for carotenoid synthesis is farnesyl pyrophosphate (diphosphate) (FPP), which is the common precursor for the biosynthesis of numerous isoprenoid compounds such as sterols, hopanols, dolicols, and quinones. The ubiquitous nature of FPP among yeasts has been utilized in the microbial production of lycopene and β-carotene by the yeast Saccharomyces cerevisiae carrying the Erwinia uredovora carotenogenic genes (19). However, the amount of carotenoids produced in these hosts was only 0.1 mg of lycopene and 0.1 mg of β-carotene per g (dry weight) of cells, respectively.The edible yeast Candida utilis is generally recognized as a safe substance by the Food and Drug Administration. Large-scale production of the yeast cells has been developed with cheap biomass-derived sugars as the carbon source for the production of single-cell protein and several chemicals such as glutathione and RNA (1, 4). This yeast was also found to accumulate a large amount of ergosterol in the cell during stationary phase (6 to 13 mg/g [dry weight] of cells) (17). Thus, C. utilis has the potential to produce a large amount of carotenoids by redirecting the carbon flux for the ergosterol biosynthesis into the nonendogenous pathway for carotenoid synthesis via FPP. Previously, a C. utilis strain was made to produce lycopene (0.8 mg/g [dry weight]) by expressing the three nonmodified genes crtE, crtB, and crtI derived from E. uredovora (15).In this paper, the de novo biosynthesis of lycopene, β-carotene, and astaxanthin has been performed in C. utilis by using six carotenogenic genes, which were synthesized according to the codon usage of the C. utilis glyceraldehyde-3-phosphate dehydrogenase (GAP) gene, which is expressed at high levels. By this approach, increased carotenoid production in C. utilis was achieved.  相似文献   

12.
Gazdaru  D.M.  Iorga  B. 《Photosynthetica》2001,39(4):607-609
Carotenoids (Car) regulate energy flow in photosynthesis by a specific Car-chlorophyll (Chl) interaction in the singlet-excited states, leading to a reduction in Chl fluorescence. We studied quenching of Chl a-fluorescence in benzene by trans--carotene. Non-linear analysis of the quenching process enables to explain the possible molecular mechanism leading to the de-excitation of Chl a. The fluorescence intensity was measured at 670 nm for excitation wavelengths of 380, 430, 640, and 650 nm. The -carotene concentrations ranged from 4×10–5 M to 5×10–3 M. When the samples were excited at 640 and 650 nm, the Stern-Volmer plots showed that the quenching process has high rate constants, hence -carotene is a very efficient quencher. Two different types of quenching process could take place.  相似文献   

13.
14.

Objective

To investigate the potential involvements of E-cadherin and β-catenin in meningioma.

Methods

Immunohistochemistry staining was performed on samples from patients with meningioma. The results were graded according to the positive ratio and intensity of tissue immunoreactivity. The expression of E-cadherin and β-catenin in meningioma was analyzed by its relationship with WHO2007 grading, invasion, peritumoral edema and postoperative recurrence.

Results

The positive rates of E-cadherin in meningioma WHO I, II, III were 92.69%, 33.33% and 0, respectively, (P<0.05); while the positive rates of β-catenin in meningioma WHO I, II, III were 82.93%, 33.33% and 20.00%, respectively, (P<0.05). The positive rate of E-cadherin in meningioma without invasion (94.12%) was higher than that with invasion (46.67%) (P<0.05). The difference in the positive rate of β-catenin between meningioma without invasion (88.24%) and meningioma with invasion (33.33%, P<0.05) was also statically significant. The positive rates of E-cadherin in meningioma with peritumoral edema 0, 1, 2, 3 were 93.75%, 85.71%, 60.00% and 0 respectively, (P<0.05); the positive rates of β-catenin in meningioma with peritumoral edema 0, 1, 2, 3 were 87.50%, 85.71%, 30.00% and 0 respectively, (P<0.01). The positive rates of E- cadherin in meningioma with postoperative recurrence were 33.33%, and the positive rate with postoperative non-recurrence was 90.00% (P<0.01). The positive rates of β-catenin in meningioma with postoperative recurrence and non-recurrence were 11.11%, 85.00%, respectively (P<0.01).

Conclusion

The expression levels of E- cadherin and β-catenin correlated closely to the WHO 2007 grading criteria for meningioma. In atypical or malignant meningioma, the expression levels of E-cadherin and β-catenin were significantly lower. The expression levels of E- cadherin and β-catenin were also closely correlated with the invasion status of meningioma, the size of the peritumoral edema and the recurrent probabilities of the meningioma, all in an inverse correlationship. Taken together, the present study provided novel molecular targets in clinical treatments to meningioma.  相似文献   

15.
The carotenoid biosynthetic pathway was genetically manipulated using the recombinant PAC (Phytoene synthase-2A-Carotene desaturase) gene in Korean soybean (Glycine max L. cv. Kwangan). The PAC gene was linked to either the β-conglycinin (β) or CaMV-35S (35S) promoter to generate β-PAC and 35S-PAC constructs, respectively. A total of 37 transgenic lines (19 for β-PAC and 18 for 35S-PAC) were obtained through Agrobacterium-mediated transformation using the modified half-seed method. The multi-copy insertion of the transgene was determined by genomic Southern blot analysis. Four lines for β-PAC were selected by visual inspection to confirm an orange endosperm, which was not found in the seeds of the 35S-PAC lines. The strong expression of PAC gene was detected in the seeds of the β-PAC lines and in the leaves of the 35S-PAC lines by RT-PCR and qRT-PCR analyses, suggesting that these two different promoters function distinctively. HPLC analysis of the seeds and leaves of the T2 generation plants revealed that the best line among the β-PAC transgenic seeds accumulated 146 µg/g of total carotenoids (approximately 62-fold higher than non-transgenic seeds), of which 112 µg/g (77%) was β-carotene. In contrast, the level and composition of the leaf carotenoids showed little difference between transgenic and non-transgenic soybean plants. We have therefore demonstrated the production of a high β-carotene soybean through the seed-specific overexpression of two carotenoid biosynthetic genes, Capsicum phytoene synthase and Pantoea carotene desaturase. This nutritional enhancement of soybean seeds through the elevation of the provitamin A content to produce biofortified food may have practical health benefits in the future in both humans and livestock.  相似文献   

16.
B. Czeczuga  A. Skalski 《Hydrobiologia》1973,42(2-3):355-362
The presence of carotenoids in the Niphargus tatrensis Wrzesniowski and Niphargus aquilex schellenbergi Karaban has been investigated. In extracts separated by means of column and thin-layer chromatography, the following carotenoids were identified:
  1. in Niphargus tatrensis: β-carotene, astaxanthin ester, rubixanthin, celaxanthin and astaxanthin.
  2. in Niphargus aquilex schellenbergi: cantha-xanthin, astaxanthin ester, isozeaxanthin (only from Jeker), 4-keto-4′-hydroxy-β-carotene (only from Terzietebronbos), rubixanthin, celaxanthin and astaxanthin.
It was not possible to identifity the sexth fractions.  相似文献   

17.
18.
We have engineered a conventional yeast, Saccharomyces cerevisiae, to confer a novel biosynthetic pathway for the production of β-carotene and lycopene by introducing the bacterial carotenoid biosynthesis genes, which are individually surrounded by the promoters and terminators derived from S. cerevisiae. β-Carotene and lycopene accumulated in the cells of this yeast, which was considered to be a result of the carbon flow for the ergosterol biosynthetic pathway being partially directed to the pathway for the carotenoid production.  相似文献   

19.
β-Ionone, a stimulatory compound in the microbiological production of β-carotene by mated cultures of Blakeslea trispora, could be replaced with low-cost agricultural by-products (citrus oils, citrus pulp, or citrus molasses) with as good or better carotene yields. Peak yields (81 to 129 mg of carotene per g of dry solids) were achieved in 5 days. The various citrus products tested did not change the pigments produced; all trans-β-carotene remained the pre-dominant pigment. The acid-hydrolyzed soybean meal and corn used in previous production media could be replaced with unhydrolyzed cottonseed embryo meal and corn in a medium that also contained a natural lipid, deodorized kerosene, nonionic detergent, and a precursor.  相似文献   

20.
Integrins are involved in a wide variety of cell adhesion processes, and have roles in gamete binding and fusion in mammals. Integrins have been also discovered in the scleractinian coral Acropora millepora (Cnidaria: Anthozoa). As a first step toward understanding the molecular basis of fertilization in corals, we examined the effect of polyclonal antisera raised against recombinant coral integrins on gamete interactions in A. millepora. Antiserum raised against integrin βcn1 dramatically decreased the binding of Acropora sperm to eggs and significantly decreased fertilization rates relative to preimmune serum and seawater controls. However, the antiserum against AmIntegrin α1 did not affect significantly either sperm–egg binding or fertilization. One possible explanation for this is that AmIntegrin α1 may preferentially mediate interactions with RGD-containing ligands, whereas mammalian α6 integrin (which is most directly implicated in gamete interactions) preferentially interacts with laminin-related ligands. Our results suggest that β1 type integrins are involved in the fertilization process in Acropora and that some functions of these molecules may have been conserved between corals and mammals. A. Iguchi and L. M. Márquez contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号