首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
E T Li  G H Anderson 《Life sciences》1984,34(25):2453-2460
After a meal of protein, in contrast to a meal of carbohydrate (CHO) at 1915 hr, rats allowed to choose from high carbohydrate and high protein diets during 2000-2100 hr prefer CHO (1). Thus the hypothesis that this regulation of macronutrient selection involves brain 5-hydroxytryptamine (5-HT) metabolism was tested. Compared to three baseline days during which rats (250- 300g ) consumed 1 g CHO, rats fed tryptophan (TRP, 5-HT precursor; 15 mg in 1 g CHO) selected meals higher in protein concentration (35.4% vs 46.6%, F (1,12) = 20.05, p less than 0.001) from 10% and 60% casein diets during 2000-2100 hr. Associated with the higher protein selection was an elevated brain 5-HT turnover in rats killed 30 minutes after consuming CHO + TRP. Pretreating rats with p-chlorophenylalanine, an inhibitor of TRP hydroxylase, blocked this effect of TRP (36.3% vs 37.0%). Fenfluramine (1 and 2 mg/kg i.p. at 1945 hr), which transiently enhances neuronal 5-HT release, increased the rat's relative preference for protein from 28.8% to 37.5% (2 mg/kg, t = 3.21, p less than 0.025) during 2000-2100 hr. These rats, also exhibited a selective preference for CHO between 3-12 hrs post injection which paralleled the known subsequent depletion of 5-HT by fenfluramine. We conclude that the relative proportion of protein and carbohydrate selected in a meal is controlled, at least in part, by prior food effects on brain 5-HT metabolism.  相似文献   

2.
The quantitative estimation of total dopamine (DA), noradrenaline (NE), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in the whole brain tissue of normal Nile grass rat, Arvicanthis niloticus, gives and average of 631 +/- 12 ng DA/g, 366 +/- 12 ng NE/g, 617 +/- 15 ng 5-HT/g and 431 +/- 10 ng 5-HIAA/g fresh brain tissue. The effect of barbitone sodium and thiopental sodium on the total DA, NE, 5-HT and 5-HIAA content in the brain tissue of the Nile grass rat, Arvicanthis niloticus, was studied. The total DA, NE, 5-HT and 5-HIAA contents were determined 5 hr after i.p. injection of different doses of barbitone sodium (20, 40 and 80 mg/ml/100 g body wt) and thiopental sodium (5, 10 and 20 mg/ml/100 g body wt). The effect of different time intervals (1, 10, 30 min, 1, 2.5, 5, 8, 16, 24 and 48 hr) on the total brain DA, NE, 5-HT and 5-HIAA content was investigated after i.p. injection of 40 mg of barbitone sodium and 10 mg of thiopental sodium/ml/100 g body wt. Both barbitone sodium and thiopental sodium caused an increase in DA, NE and 5-HT content and a decrease in 5-HIAA content in the brain tissue of Arvicanthis niloticus. The increase in the whole brain contents of DA, NE and 5-HT after the administration of barbitone sodium and thiopental sodium may be due either to inhibition of transmitter release by an action at the monoamine nerve terminal or to effects causing a decrease in nerve impulse flow. On the other hand, the decrease in 5-HIAA may be due to the decrease in the turnover of 5-HT.  相似文献   

3.
After intraperitoneal injection of rats with 6-fluorotryptophan (6-FT), brain 5-hydroxytryptamine (5-HT) levels decreased exponentially over 1 h. Depletion was dose-dependent and maximum depletion was observed at 200 mg/kg. 6-FT (200 mg/kg) did not significantly alter the content of 5-hydroxyindoleacetic acid. Turnover rates of 5-HT obtained by the 6-FT and other methods were fairly consistent. 6-FT had little effect on the content of noradrenaline and dopamine. These data suggest that 6-FT completely inhibits tryptophan hydroxylase, in vivo, without affecting the release of 5-HT from 5-HT neurons and with little effect on the activities of tyrosine hydroxylase. Therefore, 6-FT is a good pharmacological tool for studying the turnover rate of 5-HT in the brain.  相似文献   

4.
—Acute injections of LSD (2 × 500 μg/kg) to rats resulted in evidence of a reduced 5-hydroxytryptamine (5-HT) turnover in all brain areas studied. In contrast, a much smaller dose of LSD (20 μg/kg) repeated daily for 1 month produced a significantly reduced turnover only in the midbrain area. The pons/medulla and forebrain areas showed small and not statistically significant increases in 5-HT turnover.  相似文献   

5.
Perinatal mortality is high among small-for-gestational age (SGA) piglets and continues to be an economic burden and threat to animal welfare. As the physiological role of serotonin (5-hydroxytryptamine, 5-HT) in perinatal development and gastrointestinal function in the pig remains unknown, the aim of this study was to assess the enteric distribution of 5-HT cells and to determine 5-HT together with its precursor tryptophan in the serum of perinatal normal and SGA piglets. For this purpose, proximal and distal parts of the small intestine (SI) were processed for immunohistochemical analysis to assess the presence of 5-HT endocrine cells. Serum 5-HT was measured with ELISA, whereas its precursor, that is, the free fraction of tryptophan (FFT) together with albumin-bound tryptophan and total tryptophan, were analysed with HPLC in postnatal piglets. In addition, the morphological growth patterns of the different intestinal tissue layers of both normal and SGA piglets were stereologically analysed. The stereological volume density of 5-HT enteroendocrine cells showed a significant interaction effect between age and region. Indeed, the amount of 5-HT cells in both the proximal and distal part of the SI tended to decrease according to age, with the lowest values detected at day 3 postpartum. No differences could be observed related to BW. Interestingly, the serum concentration of 5-HT was higher in normal piglets compared with SGA piglets. Moreover, the ratio of FFT to total tryptophan was significantly affected by age and BW. Normal piglets had, on average, a lower FFT/total tryptophan ratio compared with SGA piglets. An approximate linear decrease was observed with increasing age. Finally, the immaturity of the intestinal system of the SGA piglets was not reflected in altered volume densities of the different intestinal layers. To conclude, although no BW effect could be detected in the distribution of enteric 5-HT cells, serum 5-HT and the ratio of FFT to total tryptophan ratio showed significant differences between normal piglets and their SGA littermates.  相似文献   

6.
The effects of tryptophan administration on neurochemical estimates of synthesis [5-hydroxytryptophan (5-HTP) accumulation following administration of a decarboxylase inhibitor], storage [5-hydroxytryptamine (5-HT) concentrations], and metabolism [5-hydroxyindoleacetic acid (5-HIAA) concentrations] of 5-HT in selected regions of the hypothalamus were determined using HPLC coupled to an electrochemical detector. Tryptophan methyl ester HCl (30-300 mg/kg i.p.) produced a dose-dependent increase in the rate of 5-HTP accumulation throughout the hypothalamus but had no effect on the rate of accumulation of 3,4-dihydroxyphenylalanine. Peak 5-HTP levels were attained by 30 min following administration of tryptophan (100 mg/kg i.p.) and were maintained for an additional 60 min. Tryptophan also produced concomitant dose-dependent increases in 5-HT and 5-HIAA concentrations in these same regions without changes in the 5-HIAA/5-HT ratio. These results indicate that exogenous tryptophan administration selectively increases the synthesis, storage, and metabolism of 5-HT in the hypothalamus without altering the synthesis of catecholamines. Inhibition of 5-HT uptake with chlorimipramine or fluoxetine produced modest (10-40%) reductions in 5-HIAA concentrations throughout the hypothalamus, revealing that only a minor portion of 5-HIAA is derived from released and recaptured 5-HT, whereas the major portion of this metabolite reflects intraneuronal metabolism of unreleased 5-HT. In both chlorimipramine- and fluoxetine-treated rats, 5-HIAA concentrations were significantly increased by tryptophan administration, indicating that the increase in synthesis of 5-HT following precursor loading is accompanied by an increase in the intraneuronal metabolism of 5-HT.  相似文献   

7.
A simple technique is described for repeated sampling of cerebrospinal fluid (CSF) from the freely moving rat and its use in the determinations of 5-hydroxytryptamine (5-HT) turnover validated. A catheter, constructed from polyethylene tubing (PP10) was implanted via a cranial approach into the cisterna magna and x-ray studies confirmed that the catheter avoided the cerebellum. 5-HT turnover was determined from the rate of rise of 5-hydroxyindoleacetic acid (5-HIAA) in both CSF and brain following an injection of probenecid (200 mg/kg i.p.). Concentrations of 5-HIAA, 5-HT and tryptophan were determined by high pressure liquid chromatography. Turnover values for individual rats were obtained using CSF samples. After p-chlorophenylalanine treatment (when brain 5-HT was depleted by 43%) 5-HT turnover values obtained were comparably reduced whether determined from CSF (-67%) or brain (-74%). Thus differences of rat brain 5-HT turnover are proportionately reflected by CSF measurements. The method for sampling of CSF should be applicable in a wide range of pharmacological and physiological situations.  相似文献   

8.
Abstract— Evidence is presented to support the hypothesis that 5-hydroxytryptamine (5-HT) in the rat brain is synthesized by two separate pathways and stored in two or more compartments. Lysergic acid diethylamide in doses down to 50 μg/kg was shown to reduce the formation of 5-[3H]HT from [3H]tryptophan in the presence of a monoamine oxidase inhibitor, although the total rate of accumulation of 5-HT was unchanged. Conversely, adrenalectomy was found to increase the total synthesis of 5-HT measured in the same way, although the amount of 5-[3H]HT formed suggested that there was no increase in the synthesis of the amine. In a third experiment it was found that electrical stimulation of 5-HT-containing nerves following labelling of 5-HT stores with [3H]tryptophan led to a biphasic disappearance of 5-[3H]HT. It is suggested that the method of measuring 5-HT synthesis by measuring 5-[3H]HT formed from[3H]tryptophan in the presence of a monoamine oxidase inhibitor may be a way of selectively measuring the turnover of the functional pool of 5-HT.  相似文献   

9.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

10.
Muscle, hypodermis and gastrointestinal epithelial cells from adult female Ascaris lumbricoides var. suum were found to contain serotonin based upon glyoxylic acid induced histofluorescence and indirect immunolabeling with an antiserotonin monoclonal antibody conjugated to protein A-colloidal gold. Histofluorescence indicated that muscle-hypodermis and intestinal epithelial cells contained significant concentrations of 5-hydroxytryptamine while fluorescence was absent in the nerve cord and cuticle. Immunolabeling at the ultrastructural level indicated that serotonin was sequestered in electron-opaque patches, dense vesicles and mitochondria of the muscle-hypodermis and intestinal tissue. Perfusion of whole worms and isolated tissues with 10(4) M-serotonin further indicated: (1) immunolabeled patches and dense vesicles were often associated with cytoskeletal elements, (2) serotonin did not appear to enter the intestinal or muscle cells by endocytosis, (3) immunolabeled patches examined with energy dispersive X-ray spectrometry (X-ray microanalysis) were found to contain iron at concentrations approximately double that of the surrounding cytoplasm.  相似文献   

11.
《Life sciences》1994,56(4):PL83-PL87
Spinally administered μ opioid agonists produce potent antinociception and inhibition of gastrointesdtinal transit. Blockade of 5-hydroxytryptamine (5-HT) or norepinephrine (NE) uptake potentiates intrathecal (i.t.) DAMGO antinociception. To determine whether 5-HT and NE uptake blockade will also potentiate the gastrointestinal inhibition, mice were treated with zimelidine, desipramine or saline, followed by i.t. DAMGO and tested for tail-flick antinociception or inhibition of gastrointestinal transit. DAMGO produceed antinociception dose-dependently (ED50 = 4.6 ng). Zimelidine (10 mg/kg, s.c., 1 hr before DAMGO) produced a 6.2-fold ng). Desipramine produced a 5.3-fold shift (ED50 = 1.4 ng). DAMGO also produced a dose-dependent inhibition of gastrointestinal transit (ED50 = 117 ng). However, zimelidine or desipramine treatment did not affect DAMGO inhibition of gastrointestinal transit (ED50 = 80 ng.).  相似文献   

12.
Abstract— Tryptophan loading of rats resulted in a continuous non-linear uptake of l -tryptophan from plasma into the brain. The optimum tryptophan load for increasing cerebral 5-hydroxytryptamine (5-HT) level was 25 mg/kg. Above this, there was a gradual decrease both in the levels and synthesis of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) as assessed from simultaneous intraperitoneal or intraventricular injections of l [14C]tryptophan. A 5–10 fold increase in cerebral tryptophan produced a limited stimulation of 5-HT synthesis. When the cerebral tryptophan level reached 1 ± 10 -4 , substrate inhibition in vivo of the tryptophan monooxygenase (tryptophan-5-hydroxylase) but not of the indoleamine-2,3-dioxygenase occurred. Cerebral synthesis of kynurenine increased linearly with increasing tryptophan load. At a plasma ratio of 50:1 tryptophan to kynurenine, tryptophan loading interfered with the entry of peripheral kynurenine. Tryptophan loading also increased the efflux of 5-hydroxyindoles from the brain. One hour after intraperitoneal injection of l -kynurenine sulfate (5 mg/kg) into rats, there was a shift in the plasma ratio of l -tryptophan to l -kynurenine to 4:1. In these rats, a 20% reduction of cerebral tryptophan was noted.  相似文献   

13.
General characteristics of the cardiovascular responses to intracerebroventricular (i.c.v.) injection of tryptamine, 5-hydroxytryptamine (5-HT), tryptophan and 5-hydroxytryptophan (5-HTP) were compared. Relatively small doses of tryptamine and 5-HT (0.005-0.1 microM) produced considerable, long-lasting and dose-dependent pressor effects, which sometimes were followed by prolonged depressor effects. Tryptophan (0.02-0.5 microM) and 5-HTP (0.02-0.2 microM) caused variable and usually slight, but long-lasting, vascular responses or no vascular response A large dose of tryptamine (0.5 microM) evoked variable vascular effects, while the same dose of 5-HT and 5-HTP evoked marked and prolonged depressor effects. The vascular responses to the drugs were accompanied by variable changes in heart rate. Tryptamine, 5-HT and 5-HTP, in the majority of rats, produced a bradycardia. The present study provides evidence that the cardiovascular response to i.c.v. administration of tryptamine is similar to that of 5-HT, supporting the idea that tryptamine, in addition to 5-HT, participates in the central physiological regulation of the rat cardiovascular system. The role of tryptophan and 5-HTP by themselves in this regulation, if any is of secondary importance.  相似文献   

14.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

15.
Short-term (90 min) administration of haloperidol (2 mg/kg), or chlorpromazine (10 mg/kg) increased the activity of tryptophan hydroxylase as well as the levels of 5-hydroxytryptamine (serotonin) and 5-hydroxyindoleacetic acid in mid-brain of rats. The chronic neuroleptic treatment (21 days) produced more pronounced changes in all parameters related to serotonin synthesis and turnover. The activity of tryptophan hydroxylase in mid-brain was further augmented; the levels of 5-hydroxytryptamine and 5-hydroxyindole-acetic acid were significantly elevated not only in mid-brain, but also in several other discrete regions examined. These data suggest that neuroleptics enhance the synthesis and utilization of brain serotonin. The role of brain serotonergic neurons in the pathophysiology of schizophrenia is further considered.  相似文献   

16.
Abstract— Results confirm previous findings that after injecting rats with 50mg/kg tryptophan the percentage increase of 5-hydroxytryptamine metabolism (as shown by 5-hydroxyindolylacetic acid changes) is particularly small in the hypothalamus. However, 15–30 min after tryptophan injection (when brain 5-hydroxytryptamine changes were maximal) percentage 5-hydroxytryptamine increases in the hypothalamus and in the rest of the brain were comparable. The small 5-hydroxyindolylacetic acid changes in the hypothalamus are consistent with a long 5-hydroxytryptamine turnover time therein as indicated by experiments using pargyline or probenecid and by the relatively small increases of 5-hydroxytryptamine after injecting tryptophan into tranylcypromine treated rats. When 5-hydroxytryptamine synthesis was partially inhibited by p -chlorophenylalanine and tryptophan was injected, there was a large percentage rise of hypothalamic 5-hydroxytryptamine but the concentration found in rats given neither drug was not attained and 5-hydroxyindolylacetic acid showed little change. Elsewhere in the brain 5-hydroxytryptamine attained concentrations comparable to those in rats given neither drug and 5-hydroxyindolylacetic acid rose considerably. Results are discussed in relation to the contributions made to brain 5-hydroxytryptamine turnover by functional and non-functional metabolism.  相似文献   

17.
The effect of intraperitoneal administration of tryptophan (50, 100, or 200 mg/kg) on extracellular concentrations of tryptophan, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) was studied in the cortex of freely moving rats by transcerebral dialysis. Rats were implanted with dialysis probes in the frontal cortex, and experiments were performed 24 h later. Tryptophan, 5-HT, and 5-HIAA were quantified in 20-min samples of dialysate by HPLC with electrochemical detection after separation on reverse-phase columns. Tryptophan administration resulted in a significant increase of tryptophan, 5-HT, and 5-HIAA levels in dialysates. The maximal increase of 5-HT and 5-HIAA output was approximately 150% over basal values. Perfusion with Ringer's solution containing tetrodotoxin (1 microM) reduced 5-HT output by 90% and prevented the increase of 5-HT and 5-HIAA content after 100 mg/kg of tryptophan. Similar results were obtained after perfusion with Ringer's solution without Ca2+. The results indicate that a tryptophan load stimulates the physiological release of 5-HT.  相似文献   

18.
Representative facultative anaerobes of the bacterial flora from the intestine of female Ascaris suum were isolated and identified. The number of bacteria in the intestine was approximately 4 X 10(9) per g wet weight of intestine. Seventeen of 19 of the isolated colonies were found to secrete 5-hydroxytryptamine in culture. Holding A. suum in an antibiotic-containing medium did not affect the levels of 5-hydroxytryptamine in the worm, which were 231 +/- 14 ng/g in antibiotic-media as compared to 250 +/- 16 ng/g in control media. This implied that the bacteria may not be contributing to the level of 5-hydroxytryptamine in the tissues of A. suum.  相似文献   

19.
Oral administration of carbaryl to adult male albino rats produced a dose dependent increase in the steady state level of 5-hydroxytryptamine (5-HT) at 1.00 h in pons-medulla (PM). 5-Hydroxyindole acetic acid (5-HIAA) concentration was significantly elevated only in response to a higher dose of this pesticide under similar conditions. A time course study with carbaryl and pentylenetetrazol (PTZ) showed a characteristic elevation of the steady state level of 5-HT in PM, but the 5-HIAA level was significantly elevated at 0.5 h only after carbaryl treatment. No significant change of the 5-HIAA level was evident after administration of PTZ alone or in combination with carbaryl. Tryptophan concentration was significantly elevated in PM at 0.5 h after carbaryl treatment and at 1.0 h after carbaryl + PTZ treatment. No significant change of tryptophan concentration was evident after the administration of PTZ alone under similar conditions. Measurement of (1) pargyline induced (a) accumulation of 5-HT and (b) depletion of 5-HIAA levels, and (2) probenecid-induced accumulation of 5-HIAA level in presence and absence of carbaryl and revealed that carbaryl accelerated the synthesis as well as the breakdown of 5-HT, whereas PTZ alone or in combination with carbaryl accelerated the synthesis of 5-HT without affecting its catabolism. The potency of this pesticide in elevating the pargyline-induced accumulation of 5-HT is in the order of carbaryl + PTZ greater than PTZ congruent to carbaryl. These results suggest that the carbaryl-induced increase in the synthesis of 5-HT is potentiated, and the turnover is reduced, in PM when PTZ is administered to the carbaryl-intoxicated rats.  相似文献   

20.
—Tryptophan was found at higher concentration in the rat hypothalamus than in other brain regions. This difference was explicable neither by regional differences in blood content nor by differences in tryptophan recovery from different weights of tissue. It was not due to interference by other known brain indoles. After food deprivation or tryptophan injection the tryptophan concentration rose in all regions. Total 5-hydroxyindole increases showed regional differences but relative changes were similar after both procedures. Increases in 5-hydroxytryptamine were clearest in midbrain + hippocampus. In general, 5-hydroxyindolylacetic acid increased more markedly than 5-hydroxytryptamine. The hypothalamus appeared refractory with negligible increases of both 5-hydroxyindoles upon either food deprivation or tryptophan administration even though hypothalamic tryptophan concentration rose considerably. Results are discussed in relation to other evidence suggesting special characteristics of 5-HT regulation in the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号