首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Comamonas sp. strain JS765 can grow with nitrobenzene as the sole source of carbon, nitrogen, and energy. We report here the sequence of the genes encoding nitrobenzene dioxygenase (NBDO), which catalyzes the first step in the degradation of nitrobenzene by strain JS765. The components of NBDO were designated ReductaseNBZ, FerredoxinNBZ, OxygenaseNBZα, and OxygenaseNBZβ, with the gene designations nbzAa, nbzAb, nbzAc, and nbzAd, respectively. Sequence analysis showed that the components of NBDO have a high level of homology with the naphthalene family of Rieske nonheme iron oxygenases, in particular, 2-nitrotoluene dioxygenase from Pseudomonas sp. strain JS42. The enzyme oxidizes a wide range of substrates, and relative reaction rates with partially purified OxygenaseNBZ revealed a preference for 3-nitrotoluene, which was shown to be a growth substrate for JS765. NBDO is the first member of the naphthalene family of Rieske nonheme iron oxygenases reported to oxidize all of the isomers of mono- and dinitrotoluenes with the concomitant release of nitrite.  相似文献   

2.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an alpha(3)beta(3) hexamer. The apparent K(m) of 2-nitrotoluene dioxygenase for 2NT was 20 muM, and that for naphthalene was 121 muM. The specificity constants were 7.0 muM(-1) min(-1) for 2NT and 1.2 muM(-1) min(-1) for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

3.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an α3β3 hexamer. The apparent Km of 2-nitrotoluene dioxygenase for 2NT was 20 μM, and that for naphthalene was 121 μM. The specificity constants were 7.0 μM−1 min−1 for 2NT and 1.2 μM−1 min−1 for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

4.
5.
Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.  相似文献   

6.
The three-component naphthalene dioxygenase enzyme system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. A member of a large family of bacterial Rieske non-heme iron oxygenases, naphthalene dioxygenase is known to oxidize over 60 different aromatic compounds, and many of the products are enantiomerically pure. The crystal structure of the oxygenase component revealed the enzyme to be an α3β3 hexamer and identified the amino acids located near the active site. Site-directed mutagenesis studies have identified the residues involved in electron transfer and those responsible for controlling the regioselectivity and enantioselectivity of the enzyme. The results of these studies suggest that naphthalene dioxygenase can be engineered to catalyze a new and extended range of useful reactions.  相似文献   

7.
Acidovorax sp. strain JS42 uses 2-nitrotoluene as a sole source of carbon and energy. The first enzyme of the degradation pathway, 2-nitrotoluene 2,3-dioxygenase, adds both atoms of molecular oxygen to 2-nitrotoluene, forming nitrite and 3-methylcatechol. All three mononitrotoluene isomers serve as substrates for 2-nitrotoluene dioxygenase, but strain JS42 is unable to grow on 3- or 4-nitrotoluene. Using both long- and short-term selections, we obtained spontaneous mutants of strain JS42 that grew on 3-nitrotoluene. All of the strains obtained by short-term selection had mutations in the gene encoding the α subunit of 2-nitrotoluene dioxygenase that changed isoleucine 204 at the active site to valine. Those strains obtained by long-term selections had mutations that changed the same residue to valine, alanine, or threonine or changed the alanine at position 405, which is just outside the active site, to glycine. All of these changes altered the regiospecificity of the enzymes with 3-nitrotoluene such that 4-methylcatechol was the primary product rather than 3-methylcatechol. Kinetic analyses indicated that the evolved enzymes had enhanced affinities for 3-nitrotoluene and were more catalytically efficient with 3-nitrotoluene than the wild-type enzyme. In contrast, the corresponding amino acid substitutions in the closely related enzyme nitrobenzene 1,2-dioxygenase were detrimental to enzyme activity. When cloned genes encoding the evolved dioxygenases were introduced into a JS42 mutant lacking a functional dioxygenase, the strains acquired the ability to grow on 3-nitrotoluene but with significantly longer doubling times than the evolved strains, suggesting that additional beneficial mutations occurred elsewhere in the genome.  相似文献   

8.
Bacteria that assimilate synthetic nitroarene compounds represent unique evolutionary models, as their metabolic pathways are in the process of adaptation and optimization for the consumption of these toxic chemicals. We used Acidovorax sp. strain JS42, which is capable of growth on nitrobenzene and 2-nitrotoluene, in experiments to examine how a nitroarene degradation pathway evolves when its host strain is challenged with direct selective pressure to assimilate non-native substrates. Although the same enzyme that initiates the degradation of nitrobenzene and 2-nitrotoluene also oxidizes 4-nitrotoluene to 4-methylcatechol, which is a growth substrate for JS42, the strain is incapable of growth on 4-nitrotoluene. Using long-term laboratory evolution experiments, we obtained JS42 mutants that gained the ability to grow on 4-nitrotoluene via a new degradation pathway. The underlying basis for this new activity resulted from the accumulation of specific mutations in the gene encoding the dioxygenase that catalyses the initial oxidation of nitroarene substrates, but at positions distal to the active site and previously unknown to affect activity in this or related enzymes. We constructed additional mutant dioxygenases to identify the order of mutations that led to the improved enzymes. Biochemical analyses revealed a defined, step-wise pathway for the evolution of the improved dioxygenases.  相似文献   

9.
Acidovorax (formerly Pseudomonas) sp. strain JS42 utilizes 2-nitrotoluene as sole carbon, nitrogen, and energy source. 2-Nitrotoluene 2,3-dioxygenase (2NTDO) catalyzes the initial step in 2-nitrotoluene degradation by converting 2-nitrotoluene to 3-methylcatechol. In this study, we identified specific amino acids at the active site that control specificity. The residue at position 350 was found to be critical in determining both the enantiospecificity of 2NTDO with naphthalene and the ability to oxidize the ring of mononitrotoluenes. Substitution of Ile350 by phenylalanine resulted in an enzyme that produced 97% (+)-(1R, 2S)-cis-naphthalene dihydrodiol, in contrast to the wild type, which produced 72% (+)-(1R, 2S)-cis-naphthalene dihydrodiol. This substitution also severely reduced the ability of the enzyme to produce methylcatechols from nitrotoluenes. Instead, the methyl group of each nitrotoluene isomer was preferentially oxidized to form the corresponding nitrobenzyl alcohol. Substitution of a valine at position 258 significantly changed the enantiospecificity of 2NTDO (54% (−)-(1S, 2R)-cis-naphthalene dihydrodiol formed from naphthalene) and the ability of the enzyme to oxidize the aromatic ring of nitrotoluenes. Based on active site modeling using the crystal structure of nitrobenzene 1,2 dioxygenase from Comamonas sp. JS765, Asn258 appears to contribute to substrate specificity through hydrogen bonding to the nitro group of nitrotoluenes.  相似文献   

10.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

11.
Rieske nonheme iron oxygenases form a large class of aromatic ring-hydroxylating dioxygenases found in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth, making them good candidates for use in synthesis of chiral intermediates and bioremediation. Studies of the chemical stability and thermostability of these enzymes thus become important. We report here the structure of free and substrate (indole)-bound forms of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The structure of the Rhodococcus enzyme reveals that, despite a approximately 30% sequence identity between these naphthalene dioxygenases, their overall structures superpose very well with a root mean square deviation of less than 1.6 A. The differences in the active site of the two enzymes are pronounced near the entrance; however, indole binds to the Rhodococcus enzyme in the same orientation as in the Pseudomonas enzyme. Circular dichroism spectroscopy experiments show that the Rhodococcus enzyme has higher thermostability than the naphthalene dioxygenase from Pseudomonas species. The Pseudomonas enzyme has an apparent melting temperature of 55 degrees C while the Rhodococcus enzyme does not completely unfold even at 95 degrees C. Both enzymes, however, show similar unfolding behavior in urea, and the Rhodococcus enzyme is only slightly more tolerant to unfolding by guanidine hydrochloride. Structure analysis suggests that the higher thermostability of the Rhodococcus enzyme may be attributed to a larger buried surface area and extra salt bridge networks between the alpha and beta subunits in the Rhodococcus enzyme.  相似文献   

12.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

13.
The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 A by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.  相似文献   

14.
Previous studies have shown that the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 proceeds by the reduction of nitrobenzene through nitrosobenzene and hydroxylaminobenzene, followed by rearrangement to 2-aminophenol, which then undergoes meta ring cleavage. We report here the isolation of a Comamonas sp. that uses an oxidative pathway for the complete mineralization of nitrobenzene. The isolate, designated strain JS765, uses nitrobenzene as a sole source of carbon, nitrogen, and energy. Nitrobenzene-grown cells oxidized nitrobenzene, with the stoichiometric release of nitrite. Extracts of nitrobenzene-grown JS765 showed high levels of catechol 2,3-dioxygenase activity that were not abolished by heating the cell extracts to 60(deg)C for 10 min. The ring cleavage product had an absorbance maximum at 375 nm, consistent with that of 2-hydroxymuconic semialdehyde. Both NAD-dependent dehydrogenase and NAD-independent hydrolase activities towards 2-hydroxymuconic semialdehyde were induced in extracts of nitrobenzene-grown cells. Catechol accumulated in the reaction mixture when cells preincubated with 3-chlorocatechol were incubated with nitrobenzene. Conversion of nitrobenzene to catechol by induced cells in the presence of 3-chlorocatechol and (sup18)O(inf2) demonstrated the simultaneous incorporation of two atoms of oxygen, which indicated that the initial reaction was dioxygenation. The results indicate that the catabolic pathway involves an initial dioxygenase attack on nitrobenzene with the release of nitrite and formation of catechol, which is subsequently degraded by a meta cleavage pathway.  相似文献   

15.
Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.  相似文献   

16.
Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.  相似文献   

17.
The first step in the degradation of 3-nitrotoluene by Diaphorobacter sp. strain DS2 is the dihydroxylation of the benzene ring with the concomitant removal of nitro group. This is catalyzed by a dioxygenase enzyme system. We report here the cloning and sequencing of the complete dioxygenase gene with its putative regulatory sequence from the genomic DNA of Diaphorobacter sp. strains DS1, DS2 and DS3. Analysis of the 5 kb DNA stretch that was cloned, revealed five complete open reading frames (ORFs) encoding for a reductase, a ferredoxin and two dioxygenase subunits with predicted molecular weights (MW) of 35, 12, 50 and 23 kDa respectively. A regulatory protein was also divergently transcribed from the reductase subunit and has a predicated MW of 34 kDa. Presence of parts of two functional ORFs in between the reductase and the ferredoxin subunits reveals an evolutionary route from a naphthalene dioxygenase like system of Ralstonia sp. strain U2. Further a 100 % identity of its ferredoxin subunit reveals its evolution via dinitrotoluene dioxygenase like system present in Burkholderia cepacia strain R34. A modeled structure of oxygenase3NT from strain DS2 was generated using nitrobenzene dioxygenase as a template. The modeled structure only showed minor changes at its active site. Comparison of growth patterns of strains DS1, DS2 and DS3 revealed that Diaphorobacter sp. strain DS1 has been evolved to degrade 4-nitrotoluene better by an oxidative route amongst all three strains.  相似文献   

18.
The naphthalene dioxygenase enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The crystal structure of naphthalene dioxygenase (B. Kauppi, K. Lee, E. Carredano, R. E. Parales, D. T. Gibson, H. Eklund, and S. Ramaswamy, Structure 6:571-586, 1998) indicates that aspartate 205 may provide the most direct route of electron transfer between the Rieske [2Fe-2S] center of one alpha subunit and mononuclear iron in the adjacent alpha subunit. In this study, we constructed four site-directed mutations that changed aspartate 205 to alanine, glutamate, asparagine, or glutamine to test whether this residue is essential for naphthalene dioxygenase activity. The mutant proteins were very inefficient in oxidizing naphthalene to cis-naphthalene dihydrodiol, and oxygen uptake in the presence of naphthalene was below detectable levels. The purified mutant protein with glutamine in place of aspartate 205 had identical spectral properties to wild-type naphthalene dioxygenase and was reduced by NADH in the presence of catalytic amounts of ferredoxinNAP and reductaseNAP. Benzene, an effective uncoupler of oxygen consumption in purified naphthalene dioxygenase, did not elicit oxygen uptake by the mutant protein. These results indicate that electron transfer from NADH to the Rieske center in the mutant oxygenase is intact, a finding consistent with the proposal that aspartate 205 is a necessary residue in the major pathway of electron transfer to mononuclear iron at the active site.  相似文献   

19.
Rieske oxygenase (RO) systems are two- and three-component enzyme systems that catalyze the formation of cis-dihydrodiols from aromatic substrates. Degradation of pollutants in contaminated soil and generation of chiral synthons have been the major foci of RO research. Substrate specificity and product regio- and stereoselectivity have been shown to vary between individual ROs. While directed evolution methods for altering RO function have been successful in the past, rational engineering of these enzymes still poses a challenge due to the lack of structural understanding. Here we examine the structural changes induced by mutation of Phe-352 in naphthalene 1,2-dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NDO-O(9816-4)). Structures of the Phe-352-Val mutant in native form and in complex with phenanthrene and anthracene, along with those of wild-type NDO-O(9816-4) in complex with phenanthrene, anthracene, and 3-nitrotoluene, are presented. Phenanthrene was shown to bind in a different orientation in the Phe-352-Val mutant active site from that in the wild type, while anthracene was found to bind in similar positions in both enzymes. Two orientations of 3-nitrotoluene were observed, i.e., a productive and a nonproductive orientation. These orientations help explain why NDO-O(9816-4) forms different products from 3-nitrotoluene than those made from nitrobenzene dioxygenase. Comparison of these structures among themselves and with other known ROs bound to substrates reveals that the orientation of substrate binding at the active site is the primary determinant of product regio- and stereoselectivity.  相似文献   

20.
Dicamba O-demethylase is a multicomponent enzyme from Pseudomonas maltophilia, strain DI-6, that catalyzes the conversion of the widely used herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). We recently described the biochemical characteristics of the three components of this enzyme (i.e. reductase(DIC), ferredoxin(DIC), and oxygenase(DIC)) and classified the oxygenase component of dicamba O-demethylase as a member of the Rieske non-heme iron family of oxygenases. In the current study, we used N-terminal and internal amino acid sequence information from the purified proteins to clone the genes that encode dicamba O-demethylase. Two reductase genes (ddmA1 and ddmA2) with predicted amino acid sequences of 408 and 409 residues were identified. The open reading frames encode 43.7- and 43.9-kDa proteins that are 99.3% identical to each other and homologous to members of the FAD-dependent pyridine nucleotide reductase family. The ferredoxin coding sequence (ddmB) specifies an 11.4-kDa protein composed of 105 residues with similarity to the adrenodoxin family of [2Fe-2S] bacterial ferredoxins. The oxygenase gene (ddmC) encodes a 37.3-kDa protein composed of 339 amino acids that is homologous to members of the Phthalate family of Rieske non-heme iron oxygenases that function as monooxygenases. Southern analysis localized the oxygenase gene to a megaplasmid in cells of P. maltophilia. Mixtures of the three highly purified recombinant dicamba O-demethylase components overexpressed in Escherichia coli converted dicamba to DCSA with an efficiency similar to that of the native enzyme, suggesting that all of the components required for optimal enzymatic activity have been identified. Computer modeling suggests that oxygenase(DIC) has strong similarities with the core alphasubunits of naphthalene 1,2-dioxygenase. Nonetheless, the present studies point to dicamba O-demethylase as an enzyme system with its own unique combination of characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号