首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RGG domain in hnRNP A2 affects subcellular localization   总被引:4,自引:0,他引:4  
The heterogeneous nuclear ribonucleoproteins (hnRNP) associate with pre-mRNA in the nucleus and play an important role in RNA processing and splice site selection. In addition, hnRNP A proteins function in the export of mRNA to the cytoplasm. Although the hnRNP A proteins are predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytoplasm. HnRNP A2, whose cytoplasmic overexpression has been identified as an early biomarker of lung cancer, has been less well studied. Cytosolic hnRNP A2 overexpression has also been noted in brain tumors, in which it has been correlated with translational repression of Glucose Transporter-1 expression. We now examine the role of arginine methylation on the nucleocytoplasmic localization of hnRNP A2 in the HEK-293 and NIH-3T3 mammalian cell lines. Treatment of either cell line with the methyltransferase inhibitor adenosine dialdehyde dramatically shifts hnRNP A2 localization from the nuclear to the cytoplasmic compartment, as shown both by immunoblotting and by immunocytochemistry. In vitro radiolabeling with [(3)H]AdoMet of GST-tagged hnRNP A2 RGG mutants, using recombinant protein arginine methyltransferase (PRMT1), shows (i) that hnRNP A2 is a substrate for PRMT1 and (ii) that methylated residues are found only in the RGG domain. Deletion of the RGG domain (R191-G253) of hnRNP A2 results in a cytoplasmic localization phenotype, detected both by immunoblotting and by immunocytochemistry. These studies indicate that the RGG domain of hnRNP A2 contains sequences critical for cellular localization of the protein. The data suggest that hnRNP A2 may contain a novel nuclear localization sequence, regulated by arginine methylation, that lies in the R191-G253 region and may function independently of the M9 transportin-1-binding region in hnRNP A2.  相似文献   

2.
Polo-like kinases in yeast, flies, and mammals regulate key events in mitosis. Such events include spindle formation at G2/M, the anaphase-promoting complex (APC) at the exit from mitosis, the cleavage structure at cytokinesis, and DNA damage checkpoints in G2/M. Polo-like kinases are distinguished by two C-terminal polo box (pb) motifs, which localize the enzymes to mitotic structures. We previously identified Sak, a novel polo-like kinase found in Drosophila and mammals. Here, we demonstrate that the Sak kinase has a functional pb domain that localizes the enzyme to the nucleolus during G2, to the centrosomes in G2/M, and to the cleavage furrow during cytokinesis. To study the role of Sak in embryo development, we generated a Sak null allele, the first polo-like kinase to be mutated in mice. Sak(-/-) embryos arrested after gastrulation at E7.5, with a marked increase in mitotic and apoptotic cells. Sak(-/-) embryos displayed cells in late anaphase or telophase that continued to express cyclin B1 and phosphorylated histone H3. Our results suggest that Sak is required for the APC-dependent destruction of cyclin B1 and for exit from mitosis in the postgastrulation embryo.  相似文献   

3.
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The centrosome duplicates once per cell cycle. Polo like kinases (Plks) perform crucial functions in cell-cycle progression and during mitosis. The polo-like kinase-2, Plk2, is activated near the G1/S phase transition, and plays an important role in the reproduction of centrosomes. In this study, we show that the polo-box of Plk2 is required both for association to the centrosome and centriole duplication. Mutation of critical sites in the Plk2 polo-box prevents centrosomal localization and impairs centriole duplication. Plk2 is localized to centrosomes during early G1 phase where it only associates to the mother centriole and then distributes equally to both mother and daughter centrioles at the onset of S phase. Furthermore, our results imply that Plk2 mediated centriole duplication is dependent on Plk4 function. In addition, we find that siRNA-mediated down-regulation of Plk2 leads to the formation of abnormal mitotic spindles confirming that Plk2 may have a function in the reproduction of centrioles.  相似文献   

4.
5.
Assigning subcellular localization (SL) to proteins is one of the major tasks of functional proteomics. Despite the impressive technical advances of the past decades, it is still time-consuming and laborious to experimentally determine SL on a high throughput scale. Thus, computational predictions are the preferred method for large-scale assignment of protein SL, and if appropriate, followed up by experimental studies. In this report, using a machine learning approach, the Nearest Neighbor Algorithm (NNA), we developed a prediction system for protein SL in which we incorporated a protein functional domain profile. The overall accuracy achieved by this system is 93.96%. Furthermore, comparisons with other methods have been conducted to demonstrate the validity and efficiency of our prediction system. We also provide an implementation of our Subcellular Location Prediction System (SLPS), which is available at http://pcal.biosino.org.  相似文献   

6.
Sequence conserved for subcellular localization   总被引:6,自引:0,他引:6       下载免费PDF全文
The more proteins diverged in sequence, the more difficult it becomes for bioinformatics to infer similarities of protein function and structure from sequence. The precise thresholds used in automated genome annotations depend on the particular aspect of protein function transferred by homology. Here, we presented the first large-scale analysis of the relation between sequence similarity and identity in subcellular localization. Three results stood out: (1) The subcellular compartment is generally more conserved than what might have been expected given that short sequence motifs like nuclear localization signals can alter the native compartment; (2) the sequence conservation of localization is similar between different compartments; and (3) it is similar to the conservation of structure and enzymatic activity. In particular, we found the transition between the regions of conserved and nonconserved localization to be very sharp, although the thresholds for conservation were less well defined than for structure and enzymatic activity. We found that a simple measure for sequence similarity accounting for pairwise sequence identity and alignment length, the HSSP distance, distinguished accurately between protein pairs of identical and different localizations. In fact, BLAST expectation values outperformed the HSSP distance only for alignments in the subtwilight zone. We succeeded in slightly improving the accuracy of inferring localization through homology by fine tuning the thresholds. Finally, we applied our results to the entire SWISS-PROT database and five entirely sequenced eukaryotes.  相似文献   

7.
NOSTRIN, an NO synthase binding protein, belongs to the PCH family of proteins, exposing a typical domain structure. While its SH3 domain and the C-terminal coiled-coil region cc2 have been studied earlier, the function of the N-terminal half comprising a Cdc15 domain with an FCH (Fes/CIP homology) region followed by a coiled-coil stretch cc1 is unknown. Here, we show that the FCH region is necessary and sufficient for membrane association of NOSTRIN, whereas the Cdc15 domain further specifies subcellular distribution of the protein. Thus, the FCH region and the Cdc15 domain fulfill complementary functions in subcellular targeting of NOSTRIN.  相似文献   

8.
Wang Y  Hu F  Elledge SJ 《Current biology : CB》2000,10(21):1379-1382
At the end of the cell cycle, cyclin-dependent kinase (CDK) activity is inactivated to allow mitotic exit [1]. A protein phosphatase, Cdc14, plays a key role during mitotic exit in budding yeast by activating the Cdh1 component of the anaphase-promoting complex to degrade cyclin B (Clb) and inducing the CDK inhibitor Sic1 to inactivate Cdk1 [2]. To prevent mitotic exit when the cell cycle is arrested at G2/M, cells must prevent CDK inactivation. In the spindle checkpoint pathway, this is accomplished through Bfa1/Bub2, a heteromeric GTPase-activating protein (GAP) that inhibits Clb degradation by keeping the G protein Tem1 inactive [3-5]. Tem1 is required for Cdc14 activation. Here we show that in budding yeast, BUB2 and BFA1 are also required for the maintenance of G2/M arrest in response to DNA damage and to spindle misorientation. cdc13-1 bub2 and cdc13-1 bfa1 but not cdc13-1 mad2 double mutants rebud and reduplicate their DNA at the restrictive temperature. We also found that the delay in mitotic exit in mutants with misoriented spindles depended on BUB2 and BFA1, but not on MAD2. We propose that Bfa1/Bub2 checkpoint pathway functions as a universal checkpoint in G2/M that prevents CDK inactivation in response to cell-cycle delay in G2/M.  相似文献   

9.
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.  相似文献   

10.
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.  相似文献   

11.
12.
R Gilbert  K Ghosh  L Rasile    H P Ghosh 《Journal of virology》1994,68(4):2272-2285
We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.  相似文献   

13.
The receptor protein-tyrosine phosphatase mu (PTPmu) is a homophilic adhesion protein thought to regulate cell-cell adhesion in the vascular endothelium through dephosphorylation of cell junction proteins. In subconfluent cell cultures, PTPmu resides in an intracellular membrane pool; however, as culture density increases and cell contacts form, the phosphatase localizes to sites of cell-cell contact, and its expression level increases. These characteristics of PTPmu, which are consistent with a role in cell-cell adhesion, suggest that control of subcellular localization is an important mechanism to regulate the function of this phosphatase. To gain a better understanding of how PTPmu is regulated, we examined the importance of the conserved immunoglobulin domain, containing the homophilic binding site, in control of the localization of the enzyme. Deletion of the immunoglobulin domain impaired localization of PTPmu to the cell-cell contacts in endothelial and epithelial cells. In addition, deletion of the immunoglobulin domain affected the distribution of PTPmu in subconfluent endothelial cells when homophilic binding to another PTPmu molecule on an apposing cell was not possible, resulting in an accumulation of the mutant phosphatase at the cell surface with a concentration at the cell periphery in the region occupied by focal adhesions. This aberrant localization correlated with reduced survival and alterations in normal focal adhesion and cytoskeleton morphology. This study therefore illustrates the critical role of the immunoglobulin domain in regulation of the localization of PTPmu and the importance of such control for the maintenance of normal cell physiology.  相似文献   

14.
15.
MOTIVATION: The knowledge of the subcellular localization of a protein is fundamental for elucidating its function. It is difficult to determine the subcellular location for eukaryotic cells with experimental high-throughput procedures. Computational procedures are then needed for annotating the subcellular location of proteins in large scale genomic projects. RESULTS: BaCelLo is a predictor for five classes of subcellular localization (secretory pathway, cytoplasm, nucleus, mitochondrion and chloroplast) and it is based on different SVMs organized in a decision tree. The system exploits the information derived from the residue sequence and from the evolutionary information contained in alignment profiles. It analyzes the whole sequence composition and the compositions of both the N- and C-termini. The training set is curated in order to avoid redundancy. For the first time a balancing procedure is introduced in order to mitigate the effect of biased training sets. Three kingdom-specific predictors are implemented: for animals, plants and fungi, respectively. When distributing the proteins from animals and fungi into four classes, accuracy of BaCelLo reach 74% and 76%, respectively; a score of 67% is obtained when proteins from plants are distributed into five classes. BaCelLo outperforms the other presently available methods for the same task and gives more balanced accuracy and coverage values for each class. We also predict the subcellular localization of five whole proteomes, Homo sapiens, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae and Arabidopsis thaliana, comparing the protein content in each different compartment. AVAILABILITY: BaCelLo can be accessed at http://www.biocomp.unibo.it/bacello/.  相似文献   

16.
17.
The localization of focal adhesion kinase (FAK) to sites of integrin clustering initiates downstream signaling. The C-terminal focal adhesion targeting (FAT) domain causes this localization by interacting with talin and paxillin. FAT also mediates signaling through Grb2 via phosphorylated Y925. We report two crystal structures of the FAT domain. Large rearrangements of the structure are indicated to allow phosphorylation of Y925 and subsequent interaction with Grb2. Sequence homology and structural compatibility suggest a FAT-like fold for the C-terminal domains of CAS, Efs/Sin, and HEF1. A structure-based alignment including these proteins and the vinculin tail domain reveals a conserved region that could play a role in focal adhesion targeting. Previously postulated "paxillin binding subdomains" may contribute to structural integrity rather than directly to paxillin binding.  相似文献   

18.
Rabip4 is a Rab4 effector, which possesses a RUN domain, two coiled-coil domains, and a FYVE finger. It is associated with the early endosomes and leads, in concert with Rab4, to the enlargement of endosomes, resulting in the fusion of sorting and recycling endosomes. Our goal was to characterize the role of these various domains in Rabip4 subcellular localization and their function in Chinese hamster ovary cells. Although the FYVE finger domain specifically bound phosphatidylinositol 3-phosphate and was necessary for the function of Rabip4, it was not sufficient for the protein association with membranes. Indeed a protein containing the FYVE finger and the Rab4-binding site was cytosolic, whereas the total protein was mostly associated to the membrane fraction, whether or not cells were pretreated with wortmannin. By contrast, a construct corresponding to the N-terminal end, Rabip4-(1-212), and containing the RUN domain was membrane-associated. The complete protein partitioned between the Triton X-100-insoluble and -soluble fractions and a wortmannin treatment increased the amount of the protein in the Triton X-100 fraction. Rabip4-(1-212) was totally Triton X-100-insoluble, and confocal microscopic examination showed that it labeled not only the endosomes, positive for Rabip4, but also a filamentous network with a honeycomb appearance. The Triton X-100-insoluble fraction that contains Rabip4 did not correspond to the caveolin or glycosylphosphatidylinositol-enriched lipid rafts. Rabip4 did not appear directly linked to actin but seemed associated to the actin network. We propose that the subcellular localization of the protein is primarily driven by the RUN domain to endosomal microdomains characterized by Triton X-100 insolubility and that the FYVE domain and the Rab4-binding domain then allow for the recruitment of the protein to lipophilic microdomains enriched in phosphatidylinositol 3-phosphate.  相似文献   

19.
Mitotic centromere-associated kinesin (MCAK) is important for anaphase chromosome segregation. MCAK is diffusely localized to both the cytoplasm and the nucleus during interphase. At prophase MCAK is recruited to mitotic centromeres. It is associated with centromeres throughout mitosis and then returns to exhibiting a diffuse nuclear and cytoplasmic localization during interphase. MCAK has several predicted nuclear localization sequences. The subcellular distribution of expressed deletion constructs of GFP-MCAK suggest that the nucleocytoplasmic ratio of MCAK protein is dependent on a balance between several predicted nuclear localization sequences (NLS) and a putative nuclear exclusion sequence (NES) in the amino-terminal region of MCAK. Amino acid substitutions in the ATP-binding domain of the MCAK motor affect nuclear localization, which, in turn, influences the degree of centromere binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号