首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxalyl-coenzyme A decarboxylase is a thiamin diphosphate dependent enzyme active in the catabolism of the highly toxic compound oxalate. The enzyme from Oxalobacter formigenes has been expressed as a recombinant protein in Escherichia coli, purified to homogeneity and crystallized. Two crystal forms were obtained, one showing poor diffraction and the other merohedral twinning. Crystals in the former category belong to the tetragonal space group P4(2)2(1)2. Data to 4.1 A resolution were collected from these crystals and an incomplete low resolution structure was initially determined by molecular replacement. Crystals in the latter category were obtained by co-crystallizing the protein with coenzyme A, thiamin diphosphate and Mg(2+)-ions. Data to 1.73 A were collected from one of these crystals with apparent point group 622. The crystal was found to be heavily twinned, and a twin ratio of 0.43 was estimated consistently by different established methods. The true space group P3(1)21 was deduced, and a molecular replacement solution was obtained using the low resolution structure as template when searching in detwinned data.  相似文献   

2.
Formyl-coenzyme A (formyl-CoA) transferase was purified from Oxalobacter formigenes by high-pressure liquid chromatography with hydrophobic interaction chromatography and by DEAE anion-exchange chromatography. The enzyme was a single entity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography (Mr, 44,000). It had an isoelectric point of 4.7. The enzyme catalyzed the transfer of CoA from formyl-CoA to either oxalate or succinate. Apparent Km and Vmax values, respectively, were 3.0 mM and 29.6 mumols/min per mg for formyl-CoA with an excess of succinate. The maximum specific activity was 2.15 mumols of CoA transferred from formyl-CoA to oxalate per min per mg of protein.  相似文献   

3.
Oxalyl-coenzyme A decarboxylase (OXC) is a key enzyme in the catabolism of the highly toxic oxalate, catalysing the decarboxylation of oxalyl-coenzyme A (Ox-CoA) to formyl-coenzyme A (For-CoA). In the present study, a capillary electrophoretic (CE) method was proposed for the assessment of the activity of recombinant OXC from two bacteria, namely Oxalobacter formigenes DSM 4420 and Lactobacillus acidophilus LA 14. In particular, the degradation of the substrate Ox-CoA occurring in the enzymatic reaction could be monitored by the off-line CE method. A capillary permanently coated with polyethylenimine (PEI) was used and in the presence of a neutral background electrolyte (50 mM phosphate buffer at pH 7.0), a reversal of the electroosmotic flow was obtained. Under these conditions, the anodic migration of Ox-CoA (substrate) and For-CoA (reaction product) occurred and their separation was accomplished in less than 12 min. The CE method was validated for selectivity, linearity (range of Ox-CoA within 0.005-0.650 mM), sensitivity (LOD of 1.5 microM at the detection wavelength of 254 nm), precision and accuracy. Steady state kinetic constants (V(max), K(m) or k') of OXC were finally estimated for both the bacteria showing that although L. acidophilus LA 14 provided a lower oxalate breakdown than O. formigenes DSM 4420, it could be a potentially useful probiotic in the prevention of diseases related to oxalate.  相似文献   

4.
H Y Lung  A L Baetz    A B Peck 《Journal of bacteriology》1994,176(8):2468-2472
Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species by an activation-decarboxylation reaction which yields formate and CO2. oxc, the gene encoding the oxalic acid-degrading enzyme oxalyl-coenzyme A decarboxylase, was cloned from the bacterium Oxalobacter formigenes. The DNA sequence revealed a single open reading frame of 1,704 bp capable of encoding a 568-amino-acid protein with a molecular weight of 60,691. The identification of a presumed promoter region and a rho-independent termination sequence indicates that this gene is not part of a polycistronic operon. A PCR fragment encoding the open reading frame, when overexpressed in Escherichia coli, produced a product which cross-reacted antigenically with native enzyme on Western blots (immunoblots), appeared to form homodimers spontaneously, and exhibited enzymatic activity similar to that of the purified native enzyme.  相似文献   

5.
Oxalobacter formigenes is an obligate anaerobe that colonizes the human gastrointestinal tract and employs oxalate breakdown to generate ATP in a novel process involving the interplay of two coupled enzymes and a membrane-bound oxalate:formate antiporter. Formyl-CoA transferase is a critical enzyme in oxalate-dependent ATP synthesis and is the first Class III CoA-transferase for which a high resolution, three-dimensional structure has been determined (Ricagno, S., Jonsson, S., Richards, N., and Lindqvist, Y. (2003) EMBO J. 22, 3210-3219). We now report the first detailed kinetic characterizations of recombinant, wild type formyl-CoA transferase and a number of site-specific mutants, which suggest that catalysis proceeds via a series of anhydride intermediates. Further evidence for this mechanistic proposal is provided by the x-ray crystallographic observation of an acylenzyme intermediate that is formed when formyl-CoA transferase is incubated with oxalyl-CoA. The catalytic mechanism of formyl-CoA transferase is therefore established and is almost certainly employed by all other members of the Class III CoA-transferase family.  相似文献   

6.
Six strains of Oxalobacter formigenes (anaerobic oxalate-degrading bacteria) were examined for their ability to colonize the gastrointestinal tracts of adult laboratory rats. These rats did not harbor O. formigenes. Strain OxCR6, isolated from the cecal contents of a laboratory rat that was naturally colonized by oxalate-degrading bacteria, colonized the ceca and colons of adult rats fed a diet that contained 4.5% sodium oxalate. Five days after rats were inoculated intragastrically with 10(9) viable cells of strain OxCR6, oxalate degradation rates in cecal and colonic contents increased by 19 and 40 times, respectively. Viable counts of strain OxCR6 from these rats averaged 10(8)/g (dry weight) of cecal contents. Strain OxCR6 was not detected in the cecal contents of inoculated rats fed diets that contained less than 3.0% sodium oxalate. Strains of O. formigenes isolated from the cecal contents of swine, guinea pigs, and wild rats and from human feces also colonized the ceca of laboratory rats; a ruminal strain failed to colonize the rat cecum.  相似文献   

7.
Cell-free lysates of the strict anaerobe Oxalobacter formigenes contained the following enzymatic activities: oxalyl coenzyme A reductase, glyoxylate carboligase, tartronic semialdehyde reductase, and glycerate kinase. NAD(P)-linked formate dehydrogenase, serine-glyoxylate aminotransferase, and NAD(P) transhydrogenase activities were not detected. These results support the hypothesis that O. formigenes assimilates carbon from oxalate by using the glycerate pathway, whereby oxalate is reduced to 3-phosphoglycerate before entering common biosynthetic pathways.  相似文献   

8.
9.
Oxalobacter formigenes and its potential role in human health   总被引:2,自引:0,他引:2  
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

10.
Oxalobacter formigenes and Its Potential Role in Human Health   总被引:2,自引:0,他引:2       下载免费PDF全文
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

11.
Histidine decarboxylase was purified 800-fold from the kidneys of thyroxine-treated mice. The purification procedure included precipitation of protein from a crude supernatant after heating it to 55 degrees C at pH 5.5, fractionation with (NH4)2SO4, phosphocellulose column chromatography, chromatofocusing, DEAE-Sepharose column chromatography, gel filtration on Sephacryl S-300 and preparative polyacrylamide-gel electrophoresis. The native enzyme had an estimated Mr of 113 000. The protein was analysed in SDS/10%-polyacrylamide gels and formed a single band corresponding to a subunit Mr of 55 000, indicating that it is a dimer. Three forms of the enzyme were resolved on isoelectrofocusing gels, with pI 5.3, 5.5 and 5.7.  相似文献   

12.
Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a single open reading frame of 1,284 bp capable of encoding a 428-amino-acid protein. A presumed promoter region and a rho-independent termination sequence suggest that this gene is part of a monocistronic operon. A PCR fragment containing the open reading frame, when overexpressed in Escherichia coli, produced a product exhibiting enzymatic activity similar to the purified native enzyme. With this, the two genes necessary for bacterial catabolism of oxalate, frc and oxc, have now been cloned, sequenced, and expressed.  相似文献   

13.
Pyruvate decarboxylase from the obligate anaerobe Sarcina ventriculi was purified eightfold. The subunit Mr was 57,000 +/- 3000 as estimated from SDS-PAGE, and the native Mr estimated by gel filtration on a Superose 6 column was 240,000, indicating that the enzyme is a tetramer. The Mr values are comparable to those for pyruvate decarboxylase from Zymomonas mobilis and Saccharomyces cerevisiae, which are also tetrameric enzymes. The enzyme was oxygen stable, and had a pH optimum within the range 6.3-6.7. It displayed sigmoidal kinetics for pyruvate, with a S0.5 of 13 mM, kinetic properties also found for pyruvate decarboxylase from yeast and differing from the Michaelis-Menten kinetics of the enzyme from Z. mobilis. No activators were found. p-Chloromercuribenzoate inhibited activity and the inhibition was reversed by the addition of dithiothreitol, indicating that cysteine is important in the active site. The N-terminal amino acid sequence of pyruvate decarboxylase was more similar to the sequence of S. cerevisiae than Z. mobilis pyruvate decarboxylase.  相似文献   

14.
Upon resolution of the particulate cell fraction of Veillonella alcalescens by gel chromatography, membranes and ribosomes were clearly resolved. Methylmalonyl-CoA decarboxylase was bound to the membranes and not to ribosomes as reported earlier. Membrane vesicles containing methylmalonyl-CoA decarboxylase were prepared by disrupting V. alcalescens cells with a French pressure chamber. About 64% of the decarboxylase was oriented in these vesicles with the substrate binding site facing to the outside. The vesicles performed a rapid accumulation of Na+ ions in response to the decarboxylation of methylmalonyl-CoA. Decarboxylation and transport were highly uncoupled. The efficiency of the transport was considerably increased if methylmalonyl-CoA decarboxylation was retarded by using a low temperature or by slowly generating the substrate enzymically from propionyl-CoA. Under optimized conditions Na+ was concentrated inside the inverted vesicles eight-times higher than in the incubation medium. Methylmalonyl-CoA decarboxylase was solubilized from the membranes with Triton X-100 and purified about 20-fold by affinity chromatography on monomeric avidin-Sepharose columns. The decarboxylase was specifically activated by Na+ ions (apparent Km approximately equal to 0.6 mM). Whereas (S)-methylmalonyl-CoA was the superior substrate (apparent Km approximately equal to 7 microM), malonyl-CoA was also decarboxylated (apparent Km approximately equal to 35 microM). The decarboxylation of methylmalonyl-CoA yielded CO2 and not HCO-3 as the primary reaction product. Analysis of the purified enzyme by dodecylsulfate gel electrophoresis indicated the presence of four different polypeptides alpha, beta, gamma, delta with Mr 60 000, 33 000, 18 5000 and 14 000. The latter of these polypeptides was clearly visible only after silver staining but not after staining with Coomassie brilliant blue. A low molecular weight polypeptide with similar staining properties was also found in oxaloacetate decarboxylase. Methylmalonyl-CoA decarboxylase contained about 1 mol covalently bound biotin per 125 500 g protein which was localized exclusively in the gamma-subunit. This subunit therefore represents the biotin carboxyl carrier protein of methylmalonyl-CoA decarboxylase. A new very sensitive method for the detection of biotin-containing proteins is described.  相似文献   

15.
Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much is not known about the factors that influence colonization and host-bacterium interactions. We have colonized mice with O. formigenes OxCC13 and systematically investigated the impacts of diets with different levels of calcium and oxalate on O. formigenes intestinal densities and urinary and intestinal oxalate levels. Measurement of intestinal oxalate levels in mice colonized or not colonized with O. formigenes demonstrated the highly efficient degradation of soluble oxalate by O. formigenes relative to other microbiota. The ratio of calcium to oxalate in diets was important in determining colonization densities and conditions where urinary oxalate and fecal oxalate excretion were modified, and the results were consistent with those from studies we have performed with colonized and noncolonized humans. The use of low-oxalate purified diets showed that 80% of animals retained O. formigenes colonization after a 1-week dietary oxalate deprivation. Animals not colonized with O. formigenes excreted two times more oxalate in feces than they had ingested. This nondietary source of oxalate may play an important role in the survival of O. formigenes during periods of dietary oxalate deprivation. These studies suggest that the mouse will be a useful model to further characterize interactions between O. formigenes and the host and factors that impact colonization.  相似文献   

16.
L-Glutamate decarboxylase, an enzyme under the control of the asexual developmental cycle of Neurospora crassa, was purified to homogeneity from conidia. The purification procedure included ammonium sulfate fractionation and DEAE-Sephadex and cellulose phosphate column chromatography. The final preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gels with a molecular weight of 33,200 +/- 200. A single band coincident with enzyme activity was found on native 7.5% polyacrylamide gels. The molecular weight of glutamate decarboxylase was 30,500 as determined by gel permeation column chromatography at pH 6.0. The enzyme had an acidic pH optimum and showed hyperbolic kinetics at pH 5.5 with a Km for glutamic acid of 2.2 mM and a Km for pyridoxal-5'-phosphate of 0.04 microM.  相似文献   

17.
18.
Pyruvate decarboxylase [2-oxo acid carboxy-lyase, EC 4.1.1.1] was isolated from sweet potato roots and was partially purified from healthy and diseased tissues. There was no appreciable difference in properties between the enzymes from healthy and diseased tissues. The molecular weight of the enzyme was found to be 240,000 by polyacrylamide gel electrophoresis. Since sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a molecular weight of 60,000 for the monomeric form of the enzyme, it is likely that sweet potato pyruvate decarboxylase contains 4 single polypeptide chains. The optimal pH of the decarboxylation reaction was 6.1--6.6. The Lineweaver-Burk double reciprocal plot curved upward, and the Hill coefficient was more than 1, with low concentrations of pyruvate. The enzyme was localized in the cytosol fraction. The activity of the enzyme increased in response to black-rot fungus infection, but decreased in response to cutting.  相似文献   

19.
20.
Glutamate decarboxylase has been purified from potato tubers. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Gel filtration on Sephadex G-200 gave a relative molecular mass Mr, of 91 000 for the native enzyme. Sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a subunit Mr of 43 000. Thus the enzyme appears to be a dimer of identical subunits. It has 2 mol pyridoxal 5'-phosphate/mol protein, which could not be removed by exhaustive dialysis or gel filtration on Sephadex G-25. The enzyme has an absorption maximum at 370 nm in sodium phosphate buffer, pH 5.8. Reduction of the enzyme with sodium borohydride abolished the absorption maximum at 370 nm with attendant loss of catalytic activity. The enzyme exhibited pH-dependent spectral changes. The enzyme was specific for L-glutamate and could not decarboxylate other amino acids tested. The enzyme was maximally active at pH 5.8 and a temperature of 37 degrees C. Isoelectric focussing gave a pI of 4.7 Km values for L-glutamate and pyridoxal 5'-phosphate were 5.6 mM and 2 microM respectively. Thiol-directed reagents and heavy metal ions inhibited the enzyme, indicating that an -SH group is required for activity. The nature of the functional groups at the active site of the enzyme was inferred from competitive inhibition studies. L-Glutamate promoted inactivation of the enzyme caused by decarboxylation-dependent transamination was demonstrated. The characteristics of potato enzyme were compared with enzyme from other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号