首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ASPECTS OF CILIARY FINE STRUCTURE IN EUPLOTES PATELLA   总被引:9,自引:8,他引:1       下载免费PDF全文
1. The functional unity of cirri and membranelles can result structurally only from extensions of the ciliary membrane. 2. The pellicle is composed of an outer pellicular membrane and an inner cytoplasmic membrane. 3. The ciliary rootlets are composed of numerous filaments 120 A in diameter with central areas of low density. They have no periodic structure. 4. The ciliary membrane is a double-layered structure continuous with the pellicular membrane. The cilia show the typical arrangement of nine double, peripheral and two single, central fibrils. All fibrils pass into the basal region, the peripheral ones joining with the rootlet filaments, while the central fibrils from the extreme proximal position of the basal region turn back toward the pellicle and appear to unite just beneath the cytoplasmic membrane. 5. The cilia (300 mµ diameter) taper at their tips to a diameter at least as small as 50 mµ. At a diameter of about 150 mµ, the fibrils begin to show a reduction in number. 6. The central ciliary fibrils may determine the possible directions of ciliary beat. These fibrils show an intrafibrillar structure in their basal portion, which involves regularly spaced 40 A granules. 7. These observations on Euplotes, together with the other evidence cited, are consistent with the hypothesis that ciliary motion is produced by the contraction of the peripheral fibrils, while the central fibrils perhaps determine the plane in which the cilia can bend.  相似文献   

2.
MATURATION OF RAT MAST CELLS : An Electron Microscope Study   总被引:9,自引:8,他引:1       下载免费PDF全文
Electron microscope study of rat mast cell maturation corroborates certain interpretations of features of mast cell differentiation based on light microscope studies. In addition, the ultrastructural variation observed in the granules of differentiating mast cells suggests that granule formation begins with the elaboration of dense granules about 70 mµ in diameter inside Golgi vacuoles. These progranules appear to aggregate inside a membrane and fuse to form dense cords 70 to 100 mµ in diameter. These dense cords are embedded in a finely granular material possibly added to the developing granule by direct continuity between perigranular membranes and cisternae of rough endoplasmic reticulum. The dense cords and finely granular material then appear to be replaced by a mass of strands about 30 mµ in diameter, thought to be a reorganization product of the two formerly separate components. A process interpreted as compaction of the strands completes the formation of the dense, homogeneous granules observed in mature rat mast cells. The similarity between mast cell granule formation and the elaboration of other granules is considered, with special reference to rabbit polymorphonuclear leukocyte azurophil granules. The relationships between the ultrastructural, histochemical, and radioautographic characteristics of mast cell granule formation are considered, and the significance of the perigranular membrane is discussed.  相似文献   

3.
Consecutive serial sections of polyhedra obtained from gipsy moth larvae infected with P. dispar virus revealed bundles of viral rods scattered and oriented at random within the polyhedral body. Each bundle was entirely surrounded by a dense, sharply defined membrane. The rods measured 18 to 22 mµ in diameter and averaged 280 mµ in length. No spherical viral particles were encountered. The effects of variable compression and periodic distortion of the sections on the appearance of the virus are discussed.  相似文献   

4.
Colonies and spore suspensions of Streptomyces coelicolor were fixed for electron microscopy by the method of Kellenberger, Ryter, and Séchaud (1958). In thin sections the nuclear regions have a lower average density than the cytoplasm and the outlines of these regions correspond well with the profiles of the chromatinic bodies observed with the light microscope. The nuclear regions contain fibrils, about 5 mµ in diameter. In contrast, after fixation by the method of Palade (1952) the nuclear material is coagulated into irregular dense masses and tubular structures about 20 mµ in diameter, lying in a nuclear "vacuole." The significance of these observations is discussed in relation to the observations of other workers on the fine structure of the nuclear material of other bacteria and the chromosomes of higher cells.  相似文献   

5.
The cultivated monkey kidney cell is subject to changes when infected with ECHO viruses 6, 9, and 19. The electron microscope reveals three stages of infection: (a) initial stage. The nucleus appears granular with chromatin condensation on the nuclear envelope. The cytoplasm contains electron transparent vesicles and vacuoles forming nests. (b) Intermediate stage. The nucleus seems to diminish, appearing more pycnotic and displaced toward the periphery. The cytoplasm is filled with electron transparent vacuoles and vesicles, and dense masses as well as some spiral bodies are seen. The mitochondria retain their shape. Dense particles are seen, which are possibly of viral nature. (c) Final stage. The nucleus is contracted to a narrow strip close to the cellular membrane or is completely destroyed. The cytoplasm shows no apparent changes. Crystals are frequently observed in cells infected with ECHO viruses 6 and 19, consisting of dense particles with an average diameter of 14.4 mµ ranging from approximately 13.2 to 15.6 mµ for ECHO virus 6, and 14.5 mµ ranging from approximately 12.5 to 16.5 mµ for ECHO virus 19. These particles are clustered in hexagonal packages forming angles of 75° and 105°. The particles in most crystals are arranged in rows separated by a constant distance, the latter varying from one crystal to another and being approximately 1.5 and 2.5 times the distance between particles. Other particles were observed which, however, are not considered to be of viral nature.  相似文献   

6.
Representative viruses of the RI-APC group were observed with the electron microscope in thin sections of infected HeLa cells. The viral particles varied in density, were approximately 60 mµ in diameter and had a center to center spacing when close packed of about 65 mµ. Many of the less dense particles exhibited an internal body averaging 24 mµ in diameter. It was suggested that within the nucleus the virus differentiated from dense granular and reticular material and formed crystals. Disintegration of the crystals and disruption of the nuclear membrane with release of virus into the cytoplasm appeared to occur at any stage. No evidence to suggest development of the virus in the cytoplasm was obtained. It was possible to deduce the structure of the viral crystal from the electron micrographs. The viral particles are packed in a cubic body—centered lattice. Correlative histochemical observations in the light microscope which are now in progress revealed that the crystals and non-crystalline aggregates of virus were strongly Feulgen-positive.  相似文献   

7.
Further evidence for fibrillar organization of the ground cytoplasm of Chaos chaos is presented. Fixations with osmium tetroxide at pH 6 or 8 and with glutaraldehyde at pH 6 or 7 were used on two preparations: (a) single actively streaming cells; (b) prechilled cells treated with 0.05% Alcian blue in the cold and returned to room temperature for 5–10 min. In addition, a 50,000 g pellet of homogenized cells was examined after fixation with glutaraldehyde-formaldehyde alone. In sections from actively streaming cells considerable numbers of filaments were observed in the uroid regions after glutaraldehyde fixation, whereas only traces of filaments were seen after osmium tetroxide fixation at either pH 6 or 8. Microtubules were not seen. In sections from dye-treated cells, filaments (4–6 mµ) and fibrils (12–15 mµ) were found with all three fixatives. The 50,000 g pellet was heterogeneous but contained both clumps of fibrils and single thick fibrils like those seen in the cytoplasm of dye-treated cells. Many fibrils of the same dimensions (12–15 mµ wide, 0.5 µ long) were also seen in the supernatant above the pellet. Negative staining showed that some fibrils separated into at least three strands of 4–6 mµ filaments.  相似文献   

8.
The fine structure of vegetative mycelia of the filamentous Ascomycete, Neurospora crassa, has been investigated by the standard techniques of electron microscopy. Addition of uranyl nitrate to the methacrylate-embedding medium minimized disruption of the specimens—an accident often observed in the preparation of microbial material. This report describes the presence of a chitinous polysaccharide wall containing fine fibrils embedded in a homogeneous matrix. A sinuate plasma membrane lies adjacent to the inner wall surface. This membrane is often closely associated with the endoplasmic reticulum of the cytoplasm. Numerous mitochondria of the classical type, and dense particles of 10 mµ diameter occur throughout the cytoplasm. The nuclear region is surrounded by a double membrane with pore openings. Associated with the nuclear envelope is a dense area, the nucleolus. The significance of these observations and their relationship to other forms is discussed.  相似文献   

9.
THE FEEDING MECHANISM OF AVIAN MALARIAL PARASITES   总被引:8,自引:3,他引:5       下载免费PDF全文
Electron microscope studies of the erythrocytic forms, including gametocytes and asexual schizonts, of the protozoa Plasmodium fallax, P. lophurae, and P. cathemerium, have revealed a "cytostome," a specialized organelle of the pellicular membrane which is active in the ingestion of host cell cytoplasm. In material fixed in glutaraldehyde and postfixed in OsO4, the cytostome appears in face view as a pore limited by two dense circular membranes and having an inside diameter of approximately 190 mµ. In cross-section, the cytostome is a cavity bounded on each side by two dense segments corresponding to the two dense circles observed in face view; its base consists of a single unit membrane. In the process of feeding, the cytostome cavity enlarges by expansion of its membrane, permitting a large quantity of red cell cytoplasm to come into contact with the cytostome wall. Subsequent digestion of erythrocyte cytoplasm occurs exclusively in food vacuoles which emanate from the cytostome invagination. As digestion progresses, the food vacuoles initially stain more densely and there is a marked build-up of hemozoin granules. In the final stage of digestion, a single membrane surrounds a cluster of residual pigment particles and very little of the original host cell cytoplasm remains. The cytostome in exoerythrocytic stages of P. fallax has been observed only in merozoites and does not seem to play the same role in the feeding mechanism.  相似文献   

10.
Thin sections of the testicular follicles of the grasshopper Laplatacris dispar were studied under the electron microscope. In the primary spermatocytes, during meiotic prophase, three main regions can be recognized within the nucleus: (1) the nucleolus and associated nucleolar material; (2) the interchromosomal regions with the dense particles; and (3) the chromosomes. The nucleolus is generally compact and is surrounded by nucleolar bodies that comprise aggregations of dense round particles 100 to 250 A in diameter. A continuous transition can be observed between these particles and those found isolated or in short chains in the interchromosomal spaces. Particles of similar size (mean diameter of 160 A) can be found associated with the nuclear membrane and in the cytoplasm. The chromosomes show different degrees of condensation in different stages of meiotic prophase. The bulk of the chromosome appears to be made of very fine and irregularly coiled filaments of macromolecular dimensions. Their length cannot be determined because of the thinness of the section but some of them can be followed without interruption for about 1000 to 2000 A. The thickness of the chromosome filaments seems to vary with different stages of prophase and in metaphase. In early prophase, filaments vary between 28 ± 7 A and 84 ± 7 A with a mean of 47 A, in late prophase the mean is about 70 A. In metaphase the filaments vary between 60 and 170 A with a mean of about 100 A. Neither the prophase nor the metaphase chromosomes have a membrane or other inhomogeneities. The finding of a macromolecular filamentous component of chromosomes is discussed in relation to the physicochemical literature on nucleoproteins and nucleic acids and as a result it is suggested that the thinnest chromosome filaments (28 ± 7 A) probably represent single deoxyribonucleoprotein molecules.  相似文献   

11.
The chromatinic material of the blue-green alga Anabaena cylindrica has complex configurations in the central regions of the cells. The distribution of the chromatin within the cells varies in different filaments, probably in response to variations in the disposition of other cellular components. In electron micrographs of thin sections of organisms fixed by the method of Kellenberger, Ryter, and Séchaud (1958) the centroplasm contains fibrillar and possibly granular components which can be identified as the nuclear material by comparison with stained preparations viewed in the light microscope. The fibrils in the nuclear regions have diameters in the range of 5 to 7 mµ and are embedded in a matrix of lower density. The nuclear regions are not greatly different from the cytoplasm in their electron density. Reducing the calcium content of the fixative results in coagulation of the fibrils to form coarser structures. The significance of the observations is discussed in relation to observations on the fine structure of other classes of algae and of bacteria.  相似文献   

12.
ULTRASTRUCTURE OF MUCOCYSTS AND PELLICLE OF TETRAHYMENA PYRIFORMIS   总被引:4,自引:4,他引:0       下载免费PDF全文
Tetrahymena pyriformis GL was fixed with glutaraldehyde and/or OsO4 for a study of cytoplasmic ultrastructure. Many small vacuoles 0.05 to 0.5 µ in diameter were found to contain each a dense particle enveloped by a limiting membrane. This membrane is continuous with the membrane of the vacuole. The particles are irregular in shape and size, but similar to the mucocysts in the appearance of the matrix. It is suggested that they are the first morphologically distinguishable stages in the development of mucocysts. In the course of this development, amorphous material becomes crystalline with a longitudinal period of 150 A and a lateral period of 100 A. The mature mucocysts are rather uniform in size and have a spheroidal shape. During discharge, the crystalline pattern disappears and the mucocysts assume a spherical configuration. The inner limiting membrane of a mucocyst seems to disintegrate during the process of discharge while the outer membrane becomes continuous with the outermost pellicular membrane; the inner pellicular membrane is continuous with the cytoplasmic membrane. Rows of few to 15 or more microtubules were found either between the cytoplasmic membrane and the ectoplasmic layer (longitudinal fibrils) or underneath the ectoplasmic layer (transverse fibrils). The outer and inner pellicular membranes are uniformly spaced and connected by "cross-bridges." Details of these structures are described.  相似文献   

13.
1. The presumptive cortical cells of hair in the undifferentiated matrix of the bulb contain mitochondria, agranular vesicles, and many small dense R.N.P. particles, but no keratin, pigment granules, or endoplasmic reticulum. 2. In the mid-bulb region intercellular adhesion is limited to small localised areas. Intercellular gaps are common and the cell surfaces are irregularly convoluted. The melanocyte processes penetrate the cell gaps. The relation between their pigment-bearing tips and the involutions of the cell membranes suggests an active phagocytosis of the tips. 3. Fibrous keratin first appears in loose parallel strands of fine filaments (ca. 60 A diameter) in the mid-bulb. The filaments, the long mitochondria, and elongated nucleus are all parallel to the long axis of the cell and the axis of the follicle. 4. At the level of the constriction of the bulb and above, a dense amorphous substance appears between the fine filaments and apparently acts as adhesive cement. The bundles of filaments now form well defined fibrils. The packing of the filaments within the fibrils is in places hexagonal and elsewhere in the form of "whorls." 5. At higher levels further filaments and interfilamentous cement are added together and the whole cytoplasmic space becomes packed with fibrils which finally condense to massive blocks of keratin. The residual cellular material occupies the interstices. 6. The addition of the interfilamentous substance is regarded as an essential factor in keratinisation. Keratin is considered to be a complex made of fine filaments (α-filaments) embedded in an amorphous substance (γ-keratin) which has the higher cystine content. 7. The wide-angle fibre-type x-ray pattern is thought to be due to scattering by the fine α-filaments and some low angle lateral spacings to the filament-plus-cement structure.  相似文献   

14.
1. The structure of the smooth muscle fibres in the longitudinal muscle coat of the body wall of Lumbricus terrestris has been investigated by phase contrast light microscopy and electron microscopy. 2. The muscle fibre is ribbon-shaped, and attached to each of its two surfaces is a set of myofibrils. These are also ribbon-shaped, and they lie with their surfaces perpendicular to the surfaces of the fibre, and their inner edges nearly meeting in the middle of the fibre. These fibrils are oriented at an angle to the fibre axis, and diminish greatly in width as they approach the edge of the fibre. The orientation of the set of fibrils belonging to one surface of the fibre is the mirror image of that of the set belonging to the other surface; thus, when both sets are in view in a fibre lying flat on one face, the fibre exhibits double oblique striation. A comparison of extended and contracted fibres indicates that as the fibre contracts, the angle made between fibre and fibril axes increases (e.g. from 5 to 30°) and so does the angle made between the two sets of fibrils (e.g. from 10 to 60°). 3. The myofibril, throughout its length, contains irregularly packed filaments, commonly 250 A in diameter, which are parallel to its long axis and remain straight in contracted muscles. Between them is material which probably consists of much finer filaments. Thus A and I bands are absent. 4. Bound to one face of each fibril, but not penetrating inside it, is a regularly spaced series of transverse stripes. They are of two kinds, alternating along the length of the fibril, and it is suggested that they are comparable to the Z and M lines of a cross-striated fibril. The spacing of these stripes is about 0.5 µ ("Z" to "Z") in extended muscles, and 0.25 µ in contracted muscles. A bridge extends from each stripe across to the stripeless surface of the next fibril.  相似文献   

15.
CHONDROGENESIS, STUDIED WITH THE ELECTRON MICROSCOPE   总被引:6,自引:15,他引:6       下载免费PDF全文
The role of the cells in the fabrication of a connective tissue matrix, and the structural modifications which accompany cytodifferentiation have been investigated in developing epiphyseal cartilage of fetal rat by means of electron microscopy. Differentiation of the prechondral mesenchymal cells to chondroblasts is marked by the acquisition of an extensive endoplasmic reticulum, enlargement and concentration of the Golgi apparatus, the appearance of membrane-bounded cytoplasmic inclusions, and the formation of specialized foci of increased density in the cell cortex. These modifications are related to the secretion of the cartilage matrix. The matrix of young hyaline cartilage consists of groups of relatively short, straight, banded collagen fibrils of 10 to 20 mµ and a dense granular component embedded in an amorphous ground substance of moderate electron density. It is postulated that the first phase of fibrillogenesis takes place at the cell cortex in dense bands or striae within the ectoplasm subjacent to the cell membrane. These can be resolved into sheaves of "primary" fibrils of about 7 to 10 mµ. They are supposedly shed (by excortication) into the matrix space between the separating chondroblasts, where they may serve as "cores" of the definitive matrix fibrils. The diameter of the fibrils may subsequently increase up to threefold, presumably by incorporation of "soluble" or tropocollagen units from the ground substance. The chondroblast also discharges into the matrix the electrondense amorphous or granular contents of vesicles derived from the Golgi apparatus, and the mixed contents of large vacuoles or blebs bounded by distinctive double membranes. Small vesicles with amorphous homogeneous contents of moderate density are expelled in toto from the chondroblasts. In their subsequent evolution to chondrocytes, both nucleus and cytoplasm of the chondroblasts undergo striking condensation. Those moving toward the osteogenic plate accumulate increasingly large stores of glycogen. In the chondrocyte, the enlarged fused Golgi vesicles with dense contents, massed in the juxtanuclear zone, are the most prominent feature of the cytoplasm. Many of these make their way to the surface to discharge their contents. The hypertrophied chondrocytes of the epiphyseal plate ultimately yield up their entire contents to the matrix.  相似文献   

16.
The differentiation of the indirect flight muscles was studied in the various pupal stages of Drosophila. Fibrillar material originates in the young basophilic myoblasts in the form of short myofilamants distributed irregularly near the cell membranes. The filaments later become grouped into bundles (fibrils). Certain "Z bodies" appear to be important during this process. The "Z bodies" may possibly be centriolar derivatives and are the precursors of the Z bands. The first formed fibrils (having about 30 thick myofilaments) are already divided into sarcomeres by Z bands. These sarcomeres, however, seem to be shorter than those of the adult fibrils.The H band differentiates in fibrils having about 40 thick myofilaments; the fibrils constrict in the middle of each sarcomere during this process. The individual myofibrils increase from about 0.3 µ to 1.5 µ in diameter during development, apparently by addition of new filaments on the periphery of the fibrils. The ribosomes seem to be the only cytoplasmic inclusions which are closely associated with these growing myofibrils. Disintegration of the plasma membranes limiting individual myoblasts was commonly seen during development of flight muscles, supporting the view that the multinuclear condition of the fibers of these muscles is due to fusion of myoblasts.  相似文献   

17.
The common renal adenocarcinoma of the leopard frog was studied in thin sections with the electron microscope. Approximately a third of the tumors examined were found to contain spheroidal bodies of uniform size and distinctive morphology that are believed to be virus particles. These consist of hollow spheres (90 to 100 mµ) having a thick capsule and a dense inner body (35 to 40 mµ) that is eccentrically placed within the central cavity (70 to 80 mµ). Virus particles of this kind occur principally in the cytoplasm but occasionally they are also found in the nucleus and in the extracellular spaces of the tumor. The intranuclear inclusion bodies that are visible with the light microscope are largely comprised of hollow, spherical vesicles with thin limiting membranes. These are embedded in a finely granular matrix. A few of the thin walled vesicles contain a dense inner body like that of the cytoplasmic virus particles. This suggests that they may be immature virus particles. The inclusion bodies are believed to be formed in the course of virus multiplication but they usually contain very few mature virus particles. Bundles of dense filaments and peculiar vacuolar inclusions also occur in the cytoplasm of the tumor cells. These seem to be related in some way to the presence of virus but their origin and significance remain obscure. These findings are discussed in relation to previous work suggesting that the Lucké adenocarcinoma is caused by an organ-specific filtrable agent. It is concluded that the "virus particles" found in electron micrographs of the tumor cells may be the postulated tumor agent. On the other hand, the possibility remains that the particles described here are not those that are causally related to the tumors.  相似文献   

18.
Dividing nuclei from the giant ameba Pelomyxa carolinensis were fixed in osmium tetroxide solutions buffered with veronal acetate to pH 8.0. If divalent cations (0.002 M calcium, magnesium, or strontium as chlorides) were added to the fixation solution, fibrils that are 14 mµ in diameter and have a dense cortex are observed in the spindle. If the divalent ions were omitted, oriented particles of smaller size are present and fibrils are not obvious. The stages of mitosis were observed and spindle components compared. Fibrils fixed in the presence of calcium ions are not so well defined in early metaphase as later, but otherwise have the same diameter in the late metaphase, anaphase, and early telophase. Fibrils are surrounded by clouds of fine material except in early telophase, when they are formed into tight bundles lying in the cytoplasm unattached to nuclei. Metaphase and anaphase fibrils fixed without calcium ions are less well defined and are not observably different from each other. The observations are consistent with the concept that spindle fibrils are composed of polymerized, oriented protein molecules that are in equilibrium with and bathed in non-oriented molecules of the same protein. Partially formed spindle fibrils and ribosome-like particles were observed in the mixoplasm when the nuclear envelope had only small discontinuities. Remnants of the envelope are visible throughout division and are probably incorporated into the new envelope in the telophase. Ribosome-like particles are numerous in the metaphase and anaphase spindle but are not seen in the telophase nucleus, once the envelope is reestablished, or in the interphase nucleus.  相似文献   

19.
THE FINE STRUCTURE OF MEISSNER's TOUCH CORPUSCLES OF HUMAN FINGERS   总被引:6,自引:6,他引:0       下载免费PDF全文
Thin slices of the finger pads of six individuals were fixed in buffered 1 per cent osmic acid, embedded in deaerated, nitrogenated methacrylate, and cut into thin sections for electron microscopic study. Before embedding, the slices were trimmed so as to include several digital tactile corpuscles. Some thin sections were stained in 10 per cent aqueous phosphotungstic acid solution. The principal part of Meissner's corpuscle is made up of flattened laminar cells stretching across the corpuscle in irregular layers. The perinuclear cytoplasm of these cells contains numerous small mitochondria, a sparse granular endoplasmic reticulum, and a large number of small vesicles. Nerve fibers enter the side or base of the corpuscle, lose their myelin sheaths, and follow a meandering course between the laminar cell plates. The nerve endings enter into a close appositional relationship with the flattened portions of the laminar cells. In some areas the apposed axolemma and cell membranes are slightly thickened with small vesicles located along the cell membrane or on both surfaces. These regions are interpreted as synapses. The most prominent feature of the nerve endings is an extraordinary accumulation of small mitochondria which vary in size and internal density. The nerve endings also contain vacuoles, groups of dense concentric membranes, and small dense vesicles of irregular distribution. The laminar cells are separated from one another by a dense intercellular substance of uniform thickness which also envelops the entire corpuscle. This material contains randomly oriented collagen fibers and fine fibrils bound together by a dense material at nodal points recurring at regular intervals of approximately 120 mµ. These findings are discussed in relation to the problems of the function of Meissner's corpuscle, neural material loss and replacement, and the presence of synapses.  相似文献   

20.
Root meristematic cells of Vicia faba were examined, with both light and electron microscopes, in order to study the behaviour of the nucleolar material during the mitotic process. Under light microscopy, the preprophase nucleolus is seen to consist of a densely stained material in which are embedded several unstained vacuole-like structures of varying size. The electron microscope reveals that the dense nucleolar material is formed of two structurally distinct components, each segregated into irregularly shaped zones blending with one another. One of these components is represented by 150 A granules which, in places, are arranged into thread-like structures approximately 0.1 µ in diameter; the other component apparently consists of fibrils 60 to 100 A in diameter. The large and medium sized intranucleolar vacuoles contain loosely scattered granules and fibrils similar to those just described. The granular and fibrillar components of the denser portion of the nucleolus persist as such during prophase and disperse throughout the nuclear cavity at the time of nucleolar disintegration. After nuclear membrane breakdown, these granules and fibrils, as well as those of the nucleoplasm, mix freely with similar elements already present within the forming spindle. No evidence has been obtained that, during or after nucleolar disintegration, the structural components of the nucleolus become associated as such with the chromosomes to form an external or internal matrix. Our observations suggest the existence, of a matrix substance within late prophase, metaphase, and anaphase chromosomes, the fine structure of which bears strong resemblance to that of their constituent coiled chromonemata. Data are presented, moreover, that indicate that part of this matrix substance, presumably formed at some time during prophase, is released from the chromosomes during their anaphasic movement. A number of observations indicate that the main bulk of the next nucleolus is derived from a prenucleolar fibrillogranular material, arranged into thread-like structures some 0.1 µ in diameter, which collect in the interchromosomal spaces during early and midtelophase. Finally, our data would seem to favour the view that most of this prenucleolar material results from a resumption of the synthetic activity of the early and midtelophase chromosomes rather than from a mere shedding of a preexisting matrix substance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号