首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteases released by larvae of the sheep blowfly have been suggested to have a primary role in wound formation and larval nutrition. Assays were carried out on two larval products to analyse the substrate specificity of these proteases, their abundance and approximate molecular weights. Tryptic and chymotryptic activities were found in both products though there were more chymotrypsin-like enzymes in products from 48 h cultures (CESP) than in product collected direct from 48 h larvae (LESP). Sodium dodecyi sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels incubated with azocasein showed plaques of major enzyme activity at molecular weights of 20,000 and 26,000 in LESP and at 20,000 in CESP. SDS-PAGE gels, when reacted with peptide substrates showed tryptic activity at 20,000 and 26,000 in LESP, whereas CESP showed only chymotryptic activity at 20,000 and higher molecular weights. The results suggest at least three enzymes, a trypsin and chymotrypsin in LESP, a chymotrypsin in CESP and a tryptic enzyme which is not stable to SDS-PAGE probably in both LESP and CESP. In addition, reactivity with elastase and plasmin substrates suggests the presence of enzymes with general effects on skin substrates and inflammatory pathways.  相似文献   

2.
3.
Summary The proteolytic enzymes trypsin and chymotrypsin in sublethal concentration modify HeLa cell colonial morphology by increasing compact colonies. There is no correlation between the amount of tryptic or chymotryptic activity of a given enzyme preparation and its ability to increase compact colonies. Proteolytic fractions containing high levels of “compact factor” activity, with low tryptic and chymotryptic activity, have been prepared from crude trypsin by disc electrophoresis. We propose that these preparations induce alteration in colonial morphology by changing cell membrane and surface charge. These studies were supported by the Medical Research Service, Veterans Administration Hospital, Omaha, Neb.  相似文献   

4.
Summary The proteolytic enzymes trypsin and chymotrypsin in sublethal concentration modify HeLa cell colonial morphology by increasing compact colonies. There is no correlation between the amount of tryptic or chymotryptic activity of a given enzyme preparation and its ability to increase compact colonies. Proteolytic fractions containing high levels of “compact factor” activity, with low tryptic and chymotryptic activity, have been prepared from crude trypsin by disc electrophoresis. We propose that these preparations induce alteration in colonial morphology by changing cell membrane and surface charge. These studies were supported by the Medical Research Service, Veterans Administration Hospital, Omaha, Neb.  相似文献   

5.
Biochemical comparison of pili from variants of Neisseria gonorrhoeae P9   总被引:10,自引:0,他引:10  
Four different types of pili produced by variants of Neisseria gonorrhoeae P9 were isolated and characterized. The pili differed in subunit molecular weight with SDS-PAGE and in subunit isoelectric point on agarose gels. Isoelectric points of the major molecular species in Triton-agarose gels of octylglucoside solubilized pili were: delta, pI 6.5; alpha, pI 6.0; beta, pI 5.3 and gamma, pI 5.5. Amino acid analyses of pili showed close homology between different types but a reduction in the content of aspartate and serine was notable in the low molecular weight delta pili; also beta and gamma maps of tryptic/chymotryptic digests of pili with several major peptides apparently common to all four pilus types.  相似文献   

6.
Digestive proteinases and carbohydrases of Ectomyelois ceratoniae (Zeller) larvae were investigated using appropriate substrates and inhibitors. Midgut pH in larvae was determined to be slightly alkaline. Midgut extracts showed optimum activity for proteolysis of hemoglobin at pH 9–12. Midgut proteinases also hydrolyzed the synthetic substrates of trypsin, chymotrypsin, and elastase at pH 8–11. Maximum digestive α-amylase activity was also observed at pH 8–11. However, optimum activity for α- and β-glucosidase occurred at pH 5–8. Alpha- and β-galactosidases optimum activities occurred at pH 5 and pH 6, respectively. Inhibitors of serine proteases were effective on midgut serine proteases (trypsin and chymotrypsin proteases). Zymogram analyses revealed at least five bands of total proteolytic activity in the larval midgut. Protease-specific zymogram analyses revealed at least four, two, and one isozymes for trypsin-, chymotrypsin-, and elastase-like activities respectively. Two α-amylase isozymes were found in the midgut of fifth instar larvae and in the whole bodies of 1st through 5th instar larvae. Zymogram studies also revealed the presence of one and two bands of activity for β- and α-glucosidase, respectively. Recycling of α-amylase and proteases in the larval midgut was not complete. At least one isozyme of trypsin, chymotrypsin, elastase, and α-amylase were not recycled and were observed in the larval hindgut.  相似文献   

7.
Excretory-secretory products (ES), collected from in vitro cultures of adult Nematospiroides dubius, were examined for proteolytic enzyme activity. ES enzymes had a pH optimum of 8.0 and their activity was sensitive to serine-proteinase inhibitors. Three SDS-resistant proteases were identified in ES at molecular weight (mol. wt) 200,000, 105,000 and 48,000 by incorporating substrates into the matrices of sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) gels.  相似文献   

8.
Proteolytic fragmentation of myosin: location of SH-1 and SH-2 thiols.   总被引:2,自引:0,他引:2  
R Cardinaud 《Biochimie》1979,61(7):807-821
The heavy chain fragmentation pattern of native myosin when digested by proteolytic enzymes is influenced by such conditions as the nature of the proteolytic agent, ionic strength and presence or absence of divalent cations. HMM and S-1 produced by digestion of 14CNEM-labelled myosin under various conditions were analyzed by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. Purified samples of these species were digested under controlled conditions by chymotrypsin and trypsin and a comparison of the observed heavy chain fragmentation patterns led to a sequential arrangement of the proteolytic fragments. The main features of this arrangement are the following: a 21K molecular weight tryptic peptide is found at the N-terminal side of myosin heavy chain. Adjacent to it is a 48K peptide, then a 19.5K peptide containing the two SH-1 and SH-2 thiols. These three peptides constitute the heavy chain of S-1. Adjacent to this S-1 heavy chain is a tryptic (and also chymotryptic) 40K peptide. The rest of the HMM heavy chain on the C-terminus is a sequence susceptible to both chymotrypsin and trypsin attack yielding an undefined number of small peptides.  相似文献   

9.
1. Two chymotrypsins with isoelectric points pI 6.2 and 5.8 were purified from the pyloric caeca of Atlantic cod using a phenyl-Sepharose column and chromatofocusing chromatography. The apparent molecular weight was 26,000 as judged by SDS-polyacrylamide gel electrophoresis and gel filtration. 2. The cod enzymes differed from bovine chymotrypsin in having a slightly higher molecular weight and more acidic pI points. N-terminal amino acid sequence analysis of cod chymotrypsin B showed considerable similarity with bovine chymotrypsin. 3. Heat stability and stability towards acidic pH were reduced in the cod enzymes. Generally, the cod and bovine chymotrypsins responded similarly to various protease inhibitors. However, the cod chymotrypsins were less sensitive to aprotinin inhibition but more sensitive towards soybean trypsin inhibitor and cysteine. 4. Kinetic properties were examined and the cod enzymes found to be more active towards both ester (N-benzoyl-tyrosine ethyl ester) and amide (N-benzoyl-tyrosine-p-nitroanilide) substrates. The observed differences in kinetic properties are indicative of an adaptive response towards the low temperature environment in which the cod lives.  相似文献   

10.
Proteolytic activity in the digestive system of the pistachio green stink bug, Brachynema germari, was investigated. The maximum total proteolytic activity in the midgut extract was observed at pH 5, suggesting the presence of cysteine proteases. Hydrolyzing the specific substrates for cysteine proteases revealed the presence of cathepsin B and cathepsin L activities in the midgut extract. The presence of cysteine proteases was confirmed by their noticeable inhibition and activation due to specific inhibitors and activators, respectively. The significant inhibition of chymotryptic activity by the inhibitors showed the presence of chymotrypsin in the midgut. No considerable tryptic activity was observed in the midgut extract. There was no detectable total proteolytic activity in the salivary gland extract. Tryptic activity of the salivary gland extract was also inhibited by the specific inhibitors. The substrates for cysteine proteases were also slightly hydrolyzed by the salivary gland extract. Zymogram analysis showed at least one distinct band due to cysteine protease activity in the midgut extract, and the cysteine protease inhibitor caused almost complete disappearance of the band. Cathepsin B and L activities were mainly detected in midgut divisions m1 and m3, respectively, and maximum chymotrypsin and trypsin activities were observed in m3. In general, the results revealed the significant presence of cathepsin B, cathepsin L, and chymotrypsin proteases in the midgut extract. The major proteolytic activity in the salivary glands seems to be conducted by trypsin-like proteases.  相似文献   

11.
The specific inhibitor of calcium-dependent proteases was purified from soluble extracts of bovine heart. The protein had a molecular weight of 125,000 on sodium dodecyl sulfate polyacrylamide gels and migrated on gel filtration chromatography with an apparent molecular weight of 250,000. The inhibitor specifically blocked the action of the two calcium-dependent proteases, CDP-I and CDP-II, but did not influence a variety of other proteases including trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. These latter enzymes extensively degraded the inhibitor to discrete lower molecular weight peptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by gel filtration chromatography. Under the conditions studied, proteolysis of the inhibitor had little or no effect on its inhibitory activity; isolated peptides with molecular weights as low as 17,000 retained inhibitory function. A number of various-sized inhibitor fragments were isolated by gel filtration chromatography and by SDS-PAGE. These fragments were compared with the intact inhibitor for their ability to inhibit CDPs. As suggested previously by us and others, one molecule of intact inhibitor appears to inhibit up to five molecules of calcium-dependent protease. The inhibitor fragments of decreasing size inhibited correspondingly fewer molecules of protease. These results suggest that the inhibitor protein contains multiple functional domains and may explain some of the discrepancies in reported molecular weights for this protein.  相似文献   

12.
The proteolytic enzymes in the gut of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), have been characterized. Both larvae and adults rely on a complex proteolytic system based on at least cathepsin D‐, cathepsin B‐, trypsin‐, chymotrypsin‐, leucine aminopeptidase‐, carboxypeptidase A‐, and carboxypeptidase B‐like activities. All endoproteolytic activities were higher in the anterior section of the gut, whereas the exopeptidases were evenly distributed in the anterior and middle sections, and almost no activity was detected in the posterior section. Gelatin‐containing gels confirmed the spatial organization of the proteolytic digestive process. According to this proteolytic profile, the STI (soybean Kunitz trypsin inhibitor) was tested in vivo to establish its potential as a resistance factor against C. sordidus. Newly hatched larvae fed on diets containing 0.2% (w/w) STI experience lower survival rates and display significant reductions in larval growth. Biochemical analysis carried out on guts of larvae reared on STI‐treated diet showed a reduction of trypsin‐like activity compared to that from larvae fed on control diet. This decrease was compensated with an induction of cathepsin B, whereas cathepsin D, chymotrypsin, and leucine aminopeptidase were not affected. These results are discussed as a basis for selecting appropriate inhibitors to obtain transgenic banana and plantain plants with enhanced resistance to this pest.  相似文献   

13.
To gain better knowledge of the variety of digestive enzymes in phytophagous coleopteran pests, a sequencing screen of 76 random cDNAs from a gut library from Phaedon cochleariae larvae was performed. The screen yielded 21 cDNAs encoding amino-acid sequences homologous to known digestive enzymes, most of them were cell wall-hydrolysing enzymes. The deduced protein sequences of 7 cDNAs encoding putative -amylase, cysteine proteinase, trypsin, chymotrypsin, cellulase, pectinase and xylanase display all the structural features that characterize these enzymes in other eukaryotic organisms. Except the -amylase and chymotrypsin cDNAs, the other cDNAs probably derive from multigene families. The distribution of the corresponding enzymatic activities at various developmental stages of P. cochleariae was examined. -amylase activity is present in guts of larvae and adults, proteinases are abundant in guts of larvae and adults, but scarce in eggs and larval carcasses, xylanases are present in the guts of larvae and adults, as well as in carcasses of larvae, whereas cellulase and pectinase activities are distributed in larval and adult guts, larval carcasses, and eggs. Only a minor fraction of the cellulases is secreted by microorganisms, suggesting that P. cochleariae synthesizes most of its own cell-wall hydrolysing enzymes. The physiological role of the enzymes is discussed, as well as the significance of these results for pest management strategies involving transgenic plants expressing enzyme inhibitors.  相似文献   

14.
Anagasta kuehniella is a polyphagous pest that feeds on a wide variety of stored products. The possible roles suggested for seed proteinase inhibitors include the function as a part of the plant defensive system against pest via inhibition of their proteolytic enzymes. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seed and was tested for insect growth regulatory effect. The chronic ingestion of ApTI did result in a significant reduction in larval survival and weight. Larval and pupal developmental time of larvae fed on ApTI diet at 1% was significantly longer; the larval period was extended by 5 days and pupal period was 10 days longer, therefore delaying by up to 20 days and resulting in a prolonged period of development from larva to adult. As a result, the ApTI diet emergence rate was only 28% while the emergence rate of control larvae was 80%. The percentage of surviving adults (%S) decreased to 62%. The fourth instar larvae reared on a diet containing 1% ApTI showed a decrease in tryptic activity of gut and that no novel proteolytic form resistant to ApTI was induced. In addition, the tryptic activity in ApTI ‐fed larvae was sensitive to ApTI. These results suggest that ApTI have a potential antimetabolic effect when ingested by A. kuehniella. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
The polypeptide products synthesized at different times in a cell-free system from Krebs mouse ascites tumor cells in response to the addition of encephalomyocarditis (EMC) virus ribonucleic acid (RNA) were characterized by electrophoresis on polyacrylamide gels and fingerprint analysis of their tryptic peptides. Translation of the EMC RNA genome with time occurred in a nonrandom fashion in these systems, to yield products containing sequences characteristic of both virion capsid polypeptides and EMC-specific polypeptides present only in the infected cell. The molecular weights of the products fell in a series from 20,000 to 140,000 daltons, although occasionally traces of larger polypeptides were also observed. All of the major polypeptides appeared to arise from partial or complete translation of about 60% of the EMC RNA genome. They were not formed by cleavage of a large precursor molecule. It is suggested that they are artifacts generated by premature "termination" of nascent polypeptide chains at preferred sites.  相似文献   

16.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

17.
A larval specific high-density lipoprotein (HDL) has been isolated from Musca domestica hemolymph by a combination of density gradient and glycerol gradient ultracentrifugations. The larval lipoprotein has a density of 1.134 g/ml and is formed by at least four apoproteins with molecular weights equal to 26,000, 23,000, 21,000, and 20,000. This lipoprotein contains large amounts of hydrocarbons and phospholipids and minor amounts of diacylglycerols and cholesterol. The larval lipoprotein is completely distinct from lipophorin in regard to apoprotein composition, lipid moiety, physiological pattern, and immunological reactions. Larval lipoprotein is accumulated until the end of the feeding period. During the pupal molt this protein is utilized and is no longer detected after 2 days of pupal stadium. The results obtained imply a possible role of this protein in the puparia and/or pupal cuticle formation. Judging from the properties shown, the Musca domestica larval lipoprotein is a completely new type of insect lipoprotein.  相似文献   

18.
Monoclonal antibodies against soybean Bowman-Birk protease inhibitor (BBI) have been generated and used to detect and quantify BBI in foods, soybean germplasm, and animal tissues and fluids. The purpose of this study was to determine the recognition sites of two monoclonal antibodies to BBI (mAb 238 and mAb 217) in relation to the protease-inhibitory sites of BBI. The results showed that (1) the binding of mAb 238 can be blocked by trypsin and that of mAb 217 by chymotrypsin; (2) the trypsin or chymotrypsin inhibitory activities of BBI are blocked by mAb 238 or mAb 217, respectively; and (3) mAb 238 failed to recognize a tryptic loop mutant BBI variant and mAb 217 was unable to bind a chymotryptic loop mutant BBI variant. These findings demonstrate that the epitopes recognized by mAb 238 and mAb 217 reside, at least in part, in the tryptic and chymotryptic loops of BBI, respectively.  相似文献   

19.
To gain better knowledge of the variety of digestive enzymes in phytophagous coleopteran pests, a sequencing screen of 76 random cDNAs from a gut library from Phaedon cochleariae larvae was performed. The screen yielded 21 cDNAs encoding amino-acid sequences homologous to known digestive enzymes, most of them were cell wall-hydrolysing enzymes. The deduced protein sequences of 7 cDNAs encoding putative α-amylase, cysteine proteinase, trypsin, chymotrypsin, cellulase, pectinase and xylanase display all the structural features that characterize these enzymes in other eukaryotic organisms. Except the α-amylase and chymotrypsin cDNAs, the other cDNAs probably derive from multigene families. The distribution of the corresponding enzymatic activities at various developmental stages of P. cochleariae was examined. α-amylase activity is present in guts of larvae and adults, proteinases are abundant in guts of larvae and adults, but scarce in eggs and larval carcasses, xylanases are present in the guts of larvae and adults, as well as in carcasses of larvae, whereas cellulase and pectinase activities are distributed in larval and adult guts, larval carcasses, and eggs. Only a minor fraction of the cellulases is secreted by microorganisms, suggesting that P. cochleariae synthesizes most of its own cell-wall hydrolysing enzymes. The physiological role of the enzymes is discussed, as well as the significance of these results for pest management strategies involving transgenic plants expressing enzyme inhibitors.  相似文献   

20.
A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae   总被引:2,自引:0,他引:2  
A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号