首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王泽立  王鲁昕  戴景瑞  王斌  李新征 《遗传学报》2001,28(5):465-470,T001
以1对近等基因系(NIL)及其回交群体(BC  相似文献   

2.
一个来自硬粒小麦的抗白粉病基因的鉴定和微卫星标记   总被引:6,自引:0,他引:6  
在起源于硬粒小麦(TriticumdurumDesf.accessionDR147)和尾状山羊草(AegilopscaudataL.acc.Ae14)合成的双二倍体与普通小麦品种“莱州953”杂交组合衍生的BC3F2群体中鉴定了一个抗小麦白粉病基因。遗传分析表明,该基因为一个显性单基因。应用分离群体分组法(BSA),鉴定了两个与抗病基因紧密连锁的微卫星标记Xgwm311和Xgwm382,它们与抗病基因的遗传距离分别为5.9cM和4.9cM。对双二倍体亲本硬粒小麦DR147和尾状山羊草Ae14及轮回亲本“莱州953”的DNAPCR扩增结果表明,与抗病基因相关的微卫星标记Xgwm311和Xgwm382来源于硬粒小麦DR147。根据已发表的小麦微卫星图谱和对“中国春”缺-四体系DNA扩增结果,抗病基因被定位在小麦2A染色体的长臂末端。  相似文献   

3.
The erect habit of fruit setting is a unique characteristic of ornamental peppers and wild pepper species. The erect habit is known to be controlled by the up locus on pepper (Capsicum annuum L.) chromosome 12. The result of a genetic analysis using Saengryeog 211 (pendant), Saengryeog 213 (erect), and their F1 and BC1 progeny demonstrated that up is a recessive gene. To develop an up-linked marker, bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) were employed using 108 F2:3 individuals. The closest AFLP marker, A2C79, was located at a genetic distance of 1.7 cM from the up locus and was converted into a cleaved amplified polymorphic sequence (CAPS) marker. This marker was mapped at a genetic distance of 4.3 cM from the up locus. When the CAPS was applied to seven ornamental lines and 27 breeding lines with erect fruit, these genotypes of 28 lines were correctly predicted. Thus, the CAPS marker will be useful for marker-assisted selection (MAS) of pepper breeding lines with the up allele at the early seedling stage.  相似文献   

4.
Resistance to powdery mildew is an important objective for cultivar improvement programmes of apple and several different major genes for resistance to mildew are available. Molecular markers linked to such key traits can be used to screen progenies for resistant individuals. A progeny derived from the crab apple 'White Angel' (the source of Pl-w) was screened for resistance to mildew for two seasons in the glasshouse and four seasons in the field. DNA bulks of resistant and susceptible seedlings were screened with 176 AFLP primer combinations. Seven AFLP markers were identified that differentiated the bulks, and two of these markers were developed into SCARs, EM M01 and EM M02, mapping at 4.6 and 6.4 recombination units from Pl-w.  相似文献   

5.
Anthracnose, caused by Colletotrichum truncatum, is a major disease problem and production constraint of lentil in North America. The research was conducted to examine the resistance to anthracnose in PI 320937 lentil and to identify molecular markers linked to the resistance gene in a recombinant inbred line (RIL) population developed from a cross of Eston lentil, the susceptible parent, and PI 320937, the resistant parent. A total of 147 F(5:6) RILs were evaluated for resistance to anthracnose in the greenhouse using isolate 95B36 of C. truncatum. Bulked segregant analysis (BSA) strategy was employed and two contrasting DNA bulks were constructed based on greenhouse inoculation of F(5)-derived F(6) RILs. DNA from the parents and bulks were screened with 700 RAPD primers and seven AFLP primer combinations. Analysis of segregation data indicated that a major dominant gene was responsible for resistance to anthracnose while variations in the resistance level among RILs could be the influences of minor genes. We designate the major gene as LCt-2. MapMaker analysis produced two flanking RAPD markers OPEO6(1250) and UBC-704(700) linked to LCt-2 locus in repulsion (6.4 cM) and in coupling (10.5 cM), respectively. Also, three AFLP markers, EMCTTACA(350) and EMCTTAGG(375) in coupling, and EMCTAAAG(175) in repulsion, were linked to the LCt-2 locus. These markers could be used to tag the LCt-2 locus and facilitate marker-assisted selection for resistance to anthracnose in segregating populations of lentil in which PI 320937 was used as the source of resistance. Also, a broader application of the linked RAPD markers was also demonstrated in Indianhead lentil, widely used as a source of resistance to anthracnose in the breeding program at the Crop Development Centre, University of Saskatchewan. Further selection within the few F(5:6) lines should be effective in pyramiding one or several of the minor genes into the working germplasm of lentil, resulting in a more durable and higher level of resistance.  相似文献   

6.
Restriction fragment length polymorphism (RFLP) maps have been constructed for cultivated sunflower (Helianthus annuus L.) using three independent sets of RFLP probes. The aim of this research was to integrate RFLP markers from two sets with RFLP markers for resistance gene candidate (RGC) and amplified fragment length polymorphism (AFLP) markers. Genomic DNA samples of HA370 and HA372, the parents of the F2 population used to build the map, were screened for AFLPs using 42 primer combinations and RFLPs using 136 cDNA probes (RFLP analyses were performed on DNA digested with EcoRI, HindIII, EcoRV, or DraI). The AFLP primers produced 446 polymorphic and 1101 monomorphic bands between HA370 and HA372. The integrated map was built by genotyping 296 AFLP and 104 RFLP markers on 180 HA370 x HA372 F2 progeny (the AFLP marker assays were performed using 18 primer combinations). The HA370 x HA372 map comprised 17 linkage groups, presumably corresponding to the 17 haploid chromosomes of sunflower, had a mean density of 3.3 cM, and was 1326 cM long. Six RGC RFLP loci were polymorphic and mapped to three linkage groups (LG8, LG13, and LG15). AFLP markers were densely clustered on several linkage groups, and presumably reside in centromeric regions where recombination is reduced and the ratio of genetic to physical distance is low. Strategies for targeting markers to euchromatic DNA need to be tested in sunflower. The HA370 x HA372 map integrated 14 of 17 linkage groups from two independent RFLP maps. Three linkage groups were devoid of RFLP markers from one of the two maps.  相似文献   

7.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

8.
In China Polima cytoplasmic male sterility (cms) is currently the most important hybrid system used for the breeding of hybrids. In an effort to develop yellow-seeded Polima cms restorer lines, we used yellow-seeded, doubled haploid (DH) line No.2127-17 as the gene source in crosses with two elite black-seeded Polima cms R lines, Hui5148-2 and 99Yu42, which originated from our breeding programme. The inheritance of seed colour was investigated in the F2, BC1 and F1-derived DH progenies of the two crosses. Seed colour was found to be under the control of the maternal genotype and the yellow seed trait to be partially dominant over the black seed trait. Segregation analysis revealed a single gene locus for the partial dominance of yellow seed colour. Of 810 randomly amplified polymorphic DNA (RAPD) primers, 240 (29.6%) revealed polymorphisms between the parents. Of the 240 RAPD primers and 512 amplified fragment length polymorphism (AFLP) primer pairs, four RAPDs and 16 AFLP pairs showed polymorphisms between the bulks, with two RAPD and eight AFLP markers being identified in the vicinity of the seed-coat colour gene locus using a DH progeny population—derived from the cross Hui5148-2×No.2127-17—of 127 individuals in combination with the bulked segregant analysis strategy. Seven of these latter ten markers were linked to the allele for yellow seed, whereas the other three were linked to the allele for black seed. The seed-coat colour gene locus was bracketed by two tightly linked markers, EA02MG08 (2.4 cM) and S1129 (3.9 cM). The partial dominance and single gene control of the yellow seed-coat colour trait together with the available molecular markers will greatly facilitate the future breeding of yellow-seeded hybrid varieties.  相似文献   

9.
Shattering habit in buckwheat has two forms: brittle pedicel and weak pedicel. Brittle pedicel is observed in wild buckwheat, but not in cultivated buckwheat. Brittle pedicel in buckwheat is produced by two complementary, dominant genes, Sht1 and Sht2. The sht1 locus is linked to the S locus; almost all common buckwheat cultivars possess the allele sht1. To detect molecular makers linked to the sht1 locus, we used amplified fragment-length polymorphism (AFLP) analysis in combination with bulked segregant analysis of segregating progeny of a cross between a non-brittle common buckwheat and a brittle self-compatible buckwheat line. We screened 312 primer combinations and constructed a linkage map around the sht1 locus by using 102 F2 plants. Five AFLP markers were linked to the sht1 locus. Two of these, e54m58/610 and e55m46/320, cosegregated with the sht1 locus without recombination. The two AFLP markers were converted to STS markers according to the sequence of the AFLPs. The STS markers are useful for marker-assisted selection of non-brittle pedicel plants and provides a stepping-stone for map-based cloning and characterization of the gene encoding non-brittle pedicel.  相似文献   

10.
The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH × RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F1 SH × RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.Communicated by J.G. Wenzel  相似文献   

11.
Wheat (Triticum aestivum L.) yellow mosaic virus (WYMV) is transmitted by a fungal vector through soil and causes serious wheat yield losses due to yellow mosaic disease, with yellow-streaked leaves and stunted plants. In the present study, the amplified fragment length polymorphisms (AFLP) and simple sequence repeat (SSR) were used to identify the molecular linkages with the resistance gene against WYMV. Bulked segregant analysis was performed with an F2 population derived from the cross of cultivar Ningmai 9 (resistant) × cultivar Yangmai 10 (susceptible). By screening among the resistant or susceptible parents, the F2 pools and the individuals in the F2 population with 64 combined selective AFLP primers (EcoRI/MseI) or 290 reported SSR primers, a polymorphic DNA segment (approximately 120 bp) was amplified using the primer pair E2/M5, and an SSR marker (approximately 180 bp) was located on wheat chromosome 2A using the primer Xgwm328. Analysis with MAPMAKER/Exp Version 3.0b (Whitehead institute for Biomedical Research, Cambridge, MA, USA) indicated that these two markers were dominantly associated with the resistance gene at distances of 5.4 cM or 17.6 cM, respectively. The resistance gene to WYMV derived from Ningmai 9, is temporarily named YmNM, and was mapped to wheat chromosome 2A.  相似文献   

12.
An amplified fragment length polymorphism map of the silkworm   总被引:52,自引:0,他引:52  
Tan YD  Wan C  Zhu Y  Lu C  Xiang Z  Deng HW 《Genetics》2001,157(3):1277-1284
The silkworm (Bombyx mori L.) is a lepidopteran insect with a long history of significant agricultural value. We have constructed the first amplified fragment length polymorphism (AFLP) genetic linkage map of the silkworm B. mori at a LOD score of 2.5. The mapping AFLP markers were genotyped in 47 progeny from a backcross population of the cross no. 782 x od100. A total of 1248 (60.7%) polymorphic AFLP markers were detected with 35 PstI/TaqI primer combinations. Each of the primer combinations generated an average of 35.7 polymorphic AFLP markers. A total of 545 (44%) polymorphic markers are consistent with the expected segregation ratio of 1:1 at the significance level of P = 0.05. Of the 545 polymorphic markers, 356 were assigned to 30 linkage groups. The number of markers on linkage groups ranged from 4 to 36. There were 21 major linkage groups with 7-36 markers and 9 relatively small linkage groups with 4-6 markers. The 30 linkage groups varied in length from 37.4 to 691.0 cM. The total length of this AFLP linkage map was 6512 cM. Genetic distances between two neighboring markers on the same linkage group ranged from 0.2 to 47 cM with an average of 18.2 cM. The sex-linked gene od was located between the markers P1T3B40 and P3T3B27 at the end of group 3, indicating that AFLP linkage group 3 was the Z (sex) chromosome. This work provides an essential basic map for constructing a denser linkage map and for mapping genes underlying agronomically important traits in the silkworm B. mori L.  相似文献   

13.
Photoperiod-sensitive genic male-sterile rice has a number of desirable characteristics for hybrid rice production. Previous studies identified pms1, located on chromosome 7, as a major locus for photoperiod-sensitive genic male sterility. The objective of this study was to localize the pms1 locus to a specific DNA fragment by genetic and physical mapping. Using 240 highly sterile individuals and a random sample of 599 individuals from an F2 population of over 5000 individuals from a cross between Minghui 63 and 32001S, we localized the pms1 locus by molecular marker analysis to a genetic interval of about 4 cM, 0.25 cM from RG477 on one side and 3.8 cM from R1807 on the other side. A contig map composed of seven BAC clones spanning approximate 500 kb in length was constructed for the pms1 region by screening a BAC library of Minghui 63 DNA using RFLP markers and chromosomal walking. Analysis of recombination events in the pms1 region among the highly sterile individuals reduced the length of the contig map to three BAC clones. Sequencing of one BAC clone, 2109, identified two SSR markers located 85 kb apart in the clone that flanked the pms1 locus on both sides, as indicated by the distribution of recombination events. We thus concluded that the pms1 locus was located on the fragment bounded by the two SSR markers.  相似文献   

14.
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogen Phytophthora infestans. The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Vos et al., 1995, Nucleic Acids Res. 23: 4407-4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates of P. infestans. The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus. Copyright 1997 Academic Press  相似文献   

15.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

16.
The Bs2 resistance gene of pepper confers resistance against the bacterial pathogen Xanthomonas campestris pv. vesicatoria. As a first step toward isolation of the Bs2 gene, molecular markers tightly linked to the gene were identified by randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis of near-isogenic lines. Markers flanking the locus were identified and a high-resolution linkage map of the region was developed. One AFLP marker, A2, was found to cosegregate with the locus, while two others, F1 and B3, flank the locus and are within 0.6 cM. Physical mapping of the A2 and F1 markers indicates that these markers may be within 150 kb of each other. Together, these results indicate that the Bs2 region may be cloned either by chromosome walker or landing. The linked markers were also used to characterize gamma-irradiation-induced mutants at the Bs2 locus. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

17.
甘蓝型油菜Pol CMS育性恢复基因的PCR标记   总被引:10,自引:1,他引:9  
王俊霞  杨光圣  傅廷栋  孟金陵 《遗传学报》2000,27(11):1012-1017
采用恢、保回交群体和集团混合分析法,筛选了1040个10-mer随机引物,找到了与甘蓝型油菜波里马细胞质雄性不育系(Pol CMS)育性恢复基因(Rfp)连锁的两个RAPD标记S1019720和S1036810。它们位于Rfp的一侧,与该基因的遗传图距分别为5.8cM和12.3cM。随后,克隆并测序这2个多态性片段,根据其2端序列设计了2对20~24-mer的特异引物,它们在138株的回交群体中P  相似文献   

18.
AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum)   总被引:11,自引:0,他引:11  
The red flour beetle (Tribolium castaneum) is a major pest of stored grain and grain products and a popular model species for a variety of ecological, evolutionary, and developmental biology studies. Development of a linkage map based on reproducible and highly polymorphic molecular markers would greatly facilitate research in these disciplines. We have developed a genetic linkage map using 269 amplified fragment length polymorphism (AFLP) markers. Ten previously known random amplified polymorphic DNA (RAPD) markers were used as anchor markers for linkage group assignment. The linkage map was constructed through genotyping two independent F(2) segregating populations with 48 AFLP primer combinations. Each primer combination generated an average of 4.6 AFLP markers eligible for linkage mapping. The length of the integrated map is 573 cM, giving an average marker resolution of 2.0 cM and an average physical distance per genetic distance of 350 kb/cM. A cluster of loci on linkage group 3 exhibited significant segregation distortion. We have also identified six X-linked and two Y-linked markers. Five mapped AFLP fragments were sequenced and converted to sequence-tagged site (STS) markers.  相似文献   

19.
The yellow seed coat trait in No. 2127-17, a resynthesized purely yellow Brassica napus line, is controlled by a single partially dominant gene, Y. A double-haploid population derived from the F1 of No. 2127-17 x 'ZY821' was used to map the seed coat color phenotype. A combination of AFLP analysis and bulked segregant analysis identified 18 AFLP markers linked to the seed coat color trait. The 18 AFLP markers were mapped to a chromosomal region of 37.0 cM with an average of 2.0 cM between adjacent markers. Two markers, AFLP-K and AFLP-H, bracketed the Y locus in an interval of 1.0 cM, such that each was 0.5 cM away from the Y locus. Two other markers, AFLP-A and AFLP-B, co-segregated with the seed color gene. For ease of use in breeding programs, these 4 most tightly linked AFLP markers were converted into reliable PCR-based markers. SCAR-K, which was derived from AFLP-K, was assigned to linkage group 9 (N9) of a B. napus reference map consisting of 150 commonly used SSR (simple sequence repeat) markers. Furthermore, 2 SSR markers (Na14-E08 and Na10-B07) linked to SCAR-K on the reference map were reversely mapped to the linkage map constructed in this study, and also showed linkage to the Y locus. These linked markers would be useful for the transfer of the dominant allele Y from No. 2127-17 to elite cultivars using a marker-assisted selection strategy and would accelerate the cloning of the seed coat color gene.  相似文献   

20.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号