首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The objective of this study was to evaluate induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, and subsequent polyamine accumulation in interleukin-2 (IL-2)- and interleukin-3 (IL-3)-dependent growth. The CTLL-20 and FDC-P1 cell lines, which have been shown to be absolutely dependent on IL-2 and IL-3, respectively, were used in these studies. The CTLL-20 and FDC-P1 cells each had different temporal patterns of ODC induction following lymphokine stimulation. ODC levels increased rapidly in the FDC-P1 cells, peaking 4 hr after stimulation with IL-3. In contrast, peak ODC activity in the CTLL-20 cells occurred 18 hr following stimulation with IL-2 and reached eightfold higher levels than those observed in the FDC-P1 cells. Treatment with D,L-alpha-difluoromethylornithine X HCl X H2O (DFMO), a specific irreversible inhibitor of ODC activity, completely abrogated lymphokine-dependent ODC induction in both the CTLL-20 and FDC-P1 cell lines. Similarly, intracellular levels of the polyamines putrescine and spermidine were reduced in both cell lines following DFMO treatment. DFMO treatment reduced both IL-2- and IL-3-dependent proliferation in a dose-dependent manner. However, this inhibition could be reversed by the addition of exogenous putrescine. DFMO treatment had no effect on cell viability. Polyamine-depleted CTLL-20 and FDC-P1 cells showed decreased absorption of IL-2 and IL-3 activity, respectively. However, the addition of exogenous putrescine restored the ability of the cells to absorb the appropriate lymphokine. These data are the first to demonstrate that ODC induction and polyamine biosynthesis are required in lymphokine dependent growth.  相似文献   

2.
3.
4.
LLC-PK1 cells were brought to a quiescent state by treatment with DL-2-difluoromethylornithine (DFMO), a specific inhibitor of L-ornithine decarboxylase (ODC). The inhibition of ODC, which is the key enzyme for polyamine synthesis, strongly reduced the cellular content of putrescine and spermidine. The cells resumed DNA-synthesis followed by mitosis when exogenous putrescine was added. DFMO treatment strongly stimulated the putrescine uptake capability. A kinetic analysis of the initial uptake rates revealed a saturable Na+-dependent and a saturable Na+-independent pathway on top of non-saturable diffusion. The stimulation by DFMO was exclusively due to an effect on the Vmax values of the saturable pathways. The Na+-dependent transporter had a higher affinity for putrescine (apparent Km = 4.7 +/- 0.7 microM) than the Na+-independent transporter (apparent Km = 29.8 +/- 3.5 microM). As a consequence, although the latter transporter had a higher Vmax, the Na+-dependent transport was more important at a physiological putrescine concentration. Putrescine uptake by both transporters was inhibited with similar relative affinities by spermidine, spermine as well as by the antileukemic agent, methylglyoxal bis(guanylhydrazone), but not by amino acids. The activity of the Na+-dependent transporter was very much dependent on SH-group reagents, whereas the Na+-independent transporter was not affected. Both transporters were inhibited by metabolic inhibitors and by ionophores but the Na+-dependent transporter was affected to a greater extent. For both transporters there was a down-regulation in response to exogenous putrescine. This suggests that the polyamine transporters in LLC-PK1 are adaptively regulated and may contribute to the regulation of the cellular polyamine level and cellular proliferation.  相似文献   

5.
The objective of the present investigation was to evaluate the requirement for increased ornithine decarboxylase (ODC) activity and polyamine biosynthesis in the induction of cytolytic T lymphocytes (CTL). In this regard, we have utilized alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO treatment completely abrogated Con A-induced NW T-cell ODC activity. Similarly, DFMO treatment reduced putrescine and spermidine biosynthesis 100 and 87% respectively by the end of a 48-hr incubation period. Polyamine depletion reduced the Con A-mediated polyclonal induction of CTL by 52 and 81% at 24 and 48 hr of culture, respectively. The effect of DFMO on CTL induction could be reversed by the addition of exogenous putrescine. These data indicate that the observed effects of DFMO on CTL induction were mediated through inhibition of polyamine biosynthesis. Therefore, increased ODC activity and polyamine biosynthesis are required for optimal CTL induction. Furthermore, polyamine depletion did not impair IL-2 production; however, IL-2-dependent proliferation was reduced. These data are the first to discriminate between the requirement for polyamines with regard to IL-2 responsiveness, rather than IL-2 production, during a primary T-cell mitogenic response.  相似文献   

6.
Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.  相似文献   

7.
Mitogenic stimulation of Nb2 lymphoma cells by lactogenic hormones (prolactin, human growth hormone) caused a dramatic early increase in ornithine decarboxylase (ODC) activity that achieved a maximal level by 6-8 h. A marked increase in ODC activity was also generated when cells which had reached a growth plateau were transferred to fresh medium that did not stimulate growth. Furthermore, low concentrations of human growth hormone (20 pg/mL) elicited a proliferative response, but did not cause a detectable early increase in ODC activity. The early peak of ODC activity thus appeared not to be directly involved in mediating lactogen-stimulated growth nor was it required to support the mitogenic response. However, prolonged suppression of ODC activity by DL-alpha-difluoromethylornithine (DFMO) (200 microM) attenuated the growth of Nb2 cells (50-60% inhibition), indicating that normal cell growth was dependent on ODC and polyamine biosynthesis. Under these conditions, putrescine, the enzyme product, or the polyamines spermidine and spermine restored normal cell growth when added at a concentration of 1 microM or greater. Nb2-SP cells, variants which proliferate in the absence of prolactin, were about two times more resistant to the growth suppressive effects of DFMO than prolactin-responsive Nb2 cells.  相似文献   

8.
Summary Treatment with -difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC), depletes the putrescine and spermidine content, and reduces the growth rate of Ehrlich ascites tumor cells.The addition of putrescine, which is the immediate precursor of spermidine, promptly replenished the intracellular putrescine and spermidine pools and completely reversed the antiproliferative effect of DFMO. A sequential accumulation of spermine, spermidine and putrescine was observed.1,3-diaminopropane, a lower homolog of putrescine, did not reverse the antiproliferative effect of DFMO, despite its structural similarity and identical positive charge. By inhibiting remaining ODC activity, resistant to 5 mM DFMO, and possibly by inhibiting spermine synthase activity, 1,3-diaminopropane produced a further decrease in total polyamine content by reducing the spermine content.Mg2+, which can replace putrescine in many in vitro reactions, completely lacked the capacity to reverse the antiproliferative effect of putrescine and spermidine deficiency.Abbreviations DFMO -difluoromethylornithine - ODC ornithine decarbxylase  相似文献   

9.
The trypanocidal activity of the ODC (ornithine decarboxylase) inhibitor DFMO (difluoromethylornithine) has validated polyamine biosynthesis as a target for chemotherapy. As DFMO is one of only two drugs used to treat patients with late-stage African trypanosomiasis, the requirement for additional drug targets is paramount. Here, we report the biochemical properties of TbSpSyn (Trypanosoma brucei spermidine synthase), the enzyme immediately downstream of ODC in this pathway. Recombinant TbSpSyn was purified and shown to catalyse the formation of spermidine from putrescine and dcSAM (decarboxylated S-adenosylmethionine). To determine the functional importance of TbSpSyn in BSF (bloodstream form) parasites, we used a tetracycline-inducible RNAi (RNA interference) system. Down-regulation of the corresponding mRNA correlated with a decrease in intracellular spermidine and cessation of growth. This phenotype could be complemented by expressing the SpSyn (spermidine synthase) gene from Leishmania major in cells undergoing RNAi, but could not be rescued by addition of spermidine to the medium due to the lack of a spermidine uptake capacity. These results therefore genetically validate TbSpSyn as a target for drug development and indicate that in the absence of a functional biosynthetic pathway, BSF T. brucei cannot scavenge sufficient spermidine from their environment to meet growth requirements.  相似文献   

10.
Differentiation of mouse neuroblastoma cells has been shown to be accompanied by changes in polyamine metabolism and a decrease in polyamine content. We have previously shown that alpha-difluoromethyl ornithine, a suicide inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17) and suboptimal concentrations of dibutyryl cAMP (0.1 to 0.2 mM) are effective in inducing the differentiation of mouse Neuro-2a (N2a) neuroblastoma cells. Exogenously added putrescine or spermidine can block the action of DFMO and dibutyryl cAMP, suggesting that polyamines may play a regulatory role in neuroblastoma differentiation. We have now isolated from N2a cells a clonal variant line, DF-40, whose ODC gene has been amplified by 40-fold. The DF-40 cells overproduced the ODC enzyme and contained very high levels of putrescine, spermidine and spermine. Treatment of DF-40 cells with dibutyryl cAMP or DFMO/dibutyryl cAMP led to a more than 80% reduction in polyamine content. Such a decrease did not cause the DF-40 cells to differentiate. Polyamine content in the treated DF-40 cells was still comparable or higher than that in the undifferentiated N2a cells. In contrast, serum-deprivation induced full differentiation of DF-40 cells. Levels of polyamine in the differentiated DF-40 cells, however, were also found to be comparable to that in the undifferentiated N2a cells. Exogenously added polyamines could not block the differentiation of DF-40 cells induced by serum-deprivation, suggesting that the action of polyamines in regulating neuroblastoma differentiation may depend on the presence of serum factors.  相似文献   

11.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

12.
DH23A cells, an α-difluoromethylornithine (DFMO)–resistant variant of rat hepatoma tissue culture cells (HTC), contain high levels of very stable ornithine decarboxylase (ODC). In the absence of DFMO, the high ODC activity results in a large accumulation of endogenous putrescine. Concomitant with the putrescine increase is a period of cytostasis and a subsequent loss of viable cells. In contrast, HTC cells with a moderate polyamine content can be maintained in exponential growth. This suggests that a moderate polyamine concentration is necessary for both optimal cell growth and survival. The cytoxicity observed in the DH23A cells is apparently not due to byproducts of polyamine oxidation or alterations in steady state intracellular pH or free [Ca2+]. It is possible to mimic the effects of high levels of stable ODC by treatment of cells with exogenous putrescine in the presence of DFMO. This suggests that overaccumulation of putrescine is the causative agent in the observed cytotoxicity, although the mechanism is unclear. These data support the hypothesis that downregulation of ODC may be necessary to prevent accumulation of cytotoxic concentrations of the polyamines. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Translational regulation of ornithine decarboxylase by polyamines   总被引:12,自引:0,他引:12  
L Persson  I Holm  O Heby 《FEBS letters》1986,205(2):175-178
  相似文献   

14.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

15.
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.  相似文献   

16.
Four mouse and two human tumour cell lines resistant to alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), were analysed for the activities of polyamine-biosynthetic and -biodegradative enzymes as well as for cellular polyamine contents. In all but one of these cell lines the resistance to DFMO was based on an overproduction of ODC. In a human myeloma cell line the resistance was based on a greatly enhanced arginase activity. Except for one L1210 variant cell line, all the resistant cell lines contained elevated S-adenosylmethionine decarboxylase activity. Similarly, all the resistant mouse, but not human, cell lines displayed enhanced spermidine and spermine synthase activities. Arginase activity was detected only in human cell lines. In both DFMO-resistant cell lines the activity of arginase was strikingly elevated. Of the biodegradative enzymes, polyamine oxidase activity was readily detectable in all mouse cells, but no measurable activity was found in the human cells. Spermidine/spermine N1-acetyltransferase activity was elevated in three out of four resistant mouse cell lines. Even though the concentration of spermidine was usually lower in the overproducer cells, this was compensated by an increased content of spermine. The two resistant human myeloma cells contained intracellular ornithine concentrations that were from more than 5 to more than 20 times higher than those in the parental cells.  相似文献   

17.
The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.  相似文献   

18.
《Journal of Asia》2022,25(1):101835
The domesticated silkworm Bombyx mori is an economically important insect that produces large quantities of silk during its 5th instar larval stage. Polyamines are important regulators of growth and have been shown to affect silk production, however their role in larval development is not completely understood. L-ornithine decarboxylase (ODC), a key regulatory enzyme in the polyamine biosynthetic pathway catalyzes the conversion of ornithine to putrescine, which is further broken down to spermidine and spermine. In this study, we set out to understand the role of ODC on the growth and development of silkworm larvae. We fed 5th instar larvae with α-difluoromethylornithine (DFMO), an ODC inhibitor and studied its impact on larval silk glands. Feeding DFMO did not alter the expression of L-ODC but led to a significant reduction in putrescine and spermidine levels. Furthermore, reduced cellular levels of polyamine led to increased oxidative stress and decreased cell viability. Subsequently, this resulted in several developmental defects at the pupal and moth stages. These findings highlight the importance of ODC in the growth and development of B. mori larvae.  相似文献   

19.
The objective of this study was to investigate the role of polyamines during meiotic maturation of Xenopus oocytes. The results indicate a rapid and significant increase in the activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, during the meiotic maturation induced by either progesterone or human chorionic gonadotropin (HCG). This increase in the enzyme activity was followed by an accumulation of putrescine without any effect on the levels of spermidine or spermine. The inhibition of ODC activity and the accumulation of putrescine levels by α-difluoromethyl ornithine (DFMO), a catalytic irreversible inhibitor of ODC, also resulted in the inhibition of maturation mediated by progesterone in Xenopus oocytes. DFMO caused an inhibition of both maturation and ovulation induced by HCG in ovarian fragments. This inhibition was readily reversible by exogenous supply of putrescine to the medium. These observations suggest that putrescine plays an important role during the meiotic maturation of amphibian oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号